Publication: On the classification of 3-bridge links
col.comunidadvinculada | Comunidad académica de Colombia | es_CO |
col.contrato | 0521-2010 | es_CO |
col.date.proyecto | 2014-06 | |
col.programa.colciencias | Programa de ciencias básicas | es_CO |
col.tipo.esp | Artículos de investigación | es_CO |
dc.audience | Estudiantes | es_CO |
dc.audience | Profesores | es_CO |
dc.coverage.spatial | Medellín, Antioquia | es_CO |
dc.creator | Hilden, Hugh Michael | |
dc.creator | Montesinos, José María | |
dc.creator | Tejada Jiménez, Débora María | |
dc.creator | Toro Villegas, Margarita María | |
dc.creator.corporativo | Universidad Nacional de Colombia, UNAL - Sede Medellín | es_CO |
dc.creator.mail | mmtoro@unal.edu.co | es_CO |
dc.date.accessioned | 2018-09-30T01:50:46Z | |
dc.date.available | 2018-09-30T01:50:46Z | |
dc.date.embargoEnd | info:eu-repo/date/embargoEnd/2024-01-31 | es_CO |
dc.date.issued | 2012 | |
dc.description.abstract | Using a new way to represent links, that we call a butterfly representation, we assign to each 3-bridge link diagram a sequence of six integers, collected as a triple (p/n, q/m, s/l), such that p ≥ q ≥ ≥ s ≥ 2, 0 < n ≤ p, 0 < m ≤ q and 0 < l ≤ s. For each 3-bridge link there exists an infinite number of 3-bridge diagrams, so we define an order in the set (p/n, q/m, s/l) and assign to each 3-bridge link L the minimum among all the triples that correspond to a 3-butterfly of L, and call it the butterfly presentation of L. This presentation extends, in a natural way, the well-known Schubert classification of 2-bridge links. We obtain necessary and sufficient conditions for a triple (p/n, q/m, s/l) to correspond to a 3-butterfly and so, to a 3-bridge link diagram. Given a triple (p/n, q/m, s/l) we give an algorithm to draw a canonical 3-bridge diagram of the associated link. We present formulas for a 3-butterfly of the mirror image of a link, for the connected sum of two rational knots and for some important families of 3-bridge links. We present the open question: When do the triples (p/n, q/m, s/l) and (p’/n’, q’/m’, s’/l’) represent the same 3-bridge link? | es_CO |
dc.description.isproject | no | es_CO |
dc.description.projectid | 1118-521-28160 | es_CO |
dc.description.projectname | Mariposas, enlaces de tres puentes y grupos relacionados | es_CO |
dc.description.sponsorship | Departamento Administrativo de Ciencia, Tecnología e Innovación [CO] Colciencias | es_CO |
dc.format | es_CO | |
dc.format.extent | 32 páginas | es_CO |
dc.identifier.issn | 0034-7426 | |
dc.identifier.uri | https://repositorio.minciencias.gov.co/handle/20.500.14143/22006 | |
dc.language.iso | eng | es_CO |
dc.relation.ispartof | Mariposas, enlaces de tres puentes y grupos relacionados : Informe científico final. La publicación completa está disponible en : <a href="http://repositorio.colciencias.gov.co:80/handle/11146/22003" target="blank">http://repositorio.colciencias.gov.co:80/handle/11146/22003</a> | |
dc.rights | info:eu-repo/semantics/embargoedAccess | es_CO |
dc.source | Revista Colombiana de Matemáticas Volumen 46(2012)2, páginas 113-144 | es_CO |
dc.source.bibliographicCitation | Contiene 26 referencias bibliográficas. Véase el documento adjunto | es_CO |
dc.subject.keyword | Bridge links | |
dc.subject.keyword | Bridge presentation | |
dc.subject.keyword | Link diagram | |
dc.subject.keyword | Butterfly | |
dc.subject.keyword | Butterfly presentation | |
dc.subject.lemb | Teoría de los números | es_CO |
dc.subject.spines | Variables reales | es_CO |
dc.subject.spines | Topología algebraica | es_CO |
dc.subject.spines | Homomorfismos | es_CO |
dc.subject.spines | Modelos matemáticos | es_CO |
dc.subject.spines | Diagramas de curvas | es_CO |
dc.title | On the classification of 3-bridge links | es_CO |
dc.type | Artículo científico | es_CO |
dc.type.driver | info:eu-repo/semantics/article | es_CO |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | es_CO |
dspace.entity.type | Publication |