Publication: Desarrollo de diferentes métodos de selección de variables para sistemas multisensoriales.
Loading...
Date
2011-01-16
Authors
Gualdrón Guerrero, Oscar Eduardo
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad de Pamplona
Abstract
Uno de los principales inconvenientes que en la actualidad presentan los sistemas multisensoriales en particular el sistema olfato artificial es la alta dimensionalidad de los datos obtenidos de las muestras analizadas, debido a la gran cantidad de parámetros que se obtienen de cada medida. El principal objetivo de este proyecto es estudiar y desarrollar nuevos métodos de selección de variables con el fin de reducir la dimensionalidad de los datos y así poder optimizar los procesos de identificación, clasificación y/o cuantificación en sistemas de olfato electrónico basados en sensores de gases o en espectrometría de masas.
El tema de la selección de variables ha visto incrementado enormemente su interés en los últimos años, ya que la mayoría de los investigadores se han percatado de la importancia de identificar los parámetros clave (marcadores) inherentes a cada aplicación. De hecho, se puede afirmar sin ningún género de dudas, que este ha sido uno de los principales temas tratados en recientes congresos internacionales sobre sistemas de olfato electrónico
Una vez se ha identificado la problemática de la alta dimensionalidad en los datos y la necesidad de buscar conjuntos reducidos de variables que permitan optimizar el proceso de reconocimiento, se plantea como propuesta de investigación el desarrollo de nuevos métodos de selección de variables basados tanto en modelos secuenciales como estocásticos acoplados con modelos predictivos basados en diferentes redes neuronales (fuzzy ARTMAP, PNN) y métodos de reconocimiento de patrones como los Support Vector Machines (SVM) entre otros.