Publication:
Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells

col.comunidadvinculadaComunidad científica colombianaes_CO
col.contrato0284-2008es_CO
col.programa.colcienciasPrograma nacional de ciencias básicases_CO
col.tipo.espArtículos de investigaciónes_CO
dc.audienceAdministradores de ciencia y tecnologíaes_CO
dc.audienceInvestigadoreses_CO
dc.coverage.spatialColombiaes_CO
dc.creatorVivas Moreno, José Joaquin
dc.creatorMejía Salazar, Jorge Ricardo
dc.creatorPorras Montenegro, Nelson
dc.creator.corporativoUniversidad del Valle, Univallees_CO
dc.creator.mailnelmonte@univalle.edu.coes_CO
dc.date.accessioned2018-08-02T22:34:32Z
dc.date.available2018-08-02T22:34:32Z
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2024-01-31es_CO
dc.date.issued2011-04
dc.description.abstractWe have studied the quantum confinement, applied hydrostatic pressure, and temperature dependence of the binding energy of a magnetoexciton bound to a ionized-donor impurity in GaAs/Ga1−xAlxAs quantum wells, taking into account the spin-orbit coupling between the (Γv7,Γv8) and (Γc7,Γc8) multiplets, including the Al concentration, temperature, and applied hydrostatic pressure dependence on the electron effective-mass me(P,T,x) and the Landé ge(P,T,x) factor by using the well known five-level k · p theory. We have found that the binding energy Eb increases with the strong geometrical confinement, as well as with the growth-direction applied magnetic field. The presence of the ionized-donor impurity clearly increases the heavy-hole exciton binding energy. The quantum confinement, in part determined by the height of the barrier potential-well, i.e., by the Al concentration and the hydrostatic pressure, contributes to enhance the binding energy. Also, we found that the exciton binding energy increases with temperature due to the different temperature band-gap dependence of the well and barrier regions, which conduces to a net increasing of the potential barrier. Also, we have obtained a good agreement with previous theoretical and experimental findings. We hope the present work must be taken into account for the understanding of experimental reports and for the design of optoelectronic devices with multiple technological purposes.es_CO
dc.description.isprojectnoes_CO
dc.description.projectid1106-452-21296es_CO
dc.description.projectnameControl cuántico de las propiedades electrónicas y de espín en nanoestructuras inorgánicas, orgánicas y biológicases_CO
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación [CO] Colcienciases_CO
dc.formatpdfes_CO
dc.format.extent8 páginases_CO
dc.identifier.doi10.1063/1.3594691
dc.identifier.urihttps://repositorio.minciencias.gov.co/handle/20.500.14143/18432
dc.language.isoenges_CO
dc.relation.ispartofControl cuántico de las propiedades electrónicas y de espín en nanoestructuras inorgánicas, orgánicas y biológicas. La publicación completa está disponible en : <a href="http://repositorio.colciencias.gov.co:80/handle/11146/18424" target="blank">http://repositorio.colciencias.gov.co:80/handle/11146/18424</a>
dc.rightsinfo:eu-repo/semantics/embargoedAccesses_CO
dc.sourceJournal of Applied Physics 109; 2011es_CO
dc.source.bibliographicCitationContiene 47 referencias bibliográficas. Véase el documento adjuntoes_CO
dc.subject.spinesHidrostática
dc.subject.spinesEnergía mecánica
dc.subject.spinesQuímica cuántica
dc.subject.spinesDispositivos semiconductores
dc.titleTemperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wellses_CO
dc.typeArtículo científicoes_CO
dc.type.driverinfo:eu-repo/semantics/articlees_CO
dc.type.hasversioninfo:eu-repo/semantics/publishedVersiones_CO
dspace.entity.typePublication

Files

Collections