Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Grajales, Edwing J."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Kinetics of depolymerization of paraformaldehyde obtained by thermogravimetric analysis
    (2015-04) Villa Holguín, Aída Luz; Alarcón Durango, Edwin Alexis; Grajales, Edwing J.
    Solid paraformaldehyde is a source of formaldehyde that is preferred when anhydrous conditions in chemical processes are required. In this contribution, several depolymerization models were proposed for paraformaldehyde in powder (PFP) and prills (PFS), and they were validated with experimental thermogravimetric analysis (TGA). For description of PFP depolymerization, a model of a single step was adequate, and for PFS the best model included two simultaneous mechanisms. Kinetic models were determined using Master Plot method; for PFS, small intervals of conversion were used in order to obtain the best model at each finite point of the progress of reaction. Apparent activation energies (Ea) were obtained by isoconversional methods. For PFP, Ea was 31.7 kJ mol-1 and the model corresponded to Avrami-Erofeyev 2 (A2). For PFS decomposition, the activation energy of the two mechanisms was Ea = 105.4 kJ mol-1 for a contracting volume (R3) model and Ea = 48.4 kJ mol-1 for the Avrami-Erofeyev model.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback