FÍSICA Y SOCIEDAD
2005 AÑO MUNDIAL DE LA CIENCIA
Maria del Rosario Guerra de Mesa, Directora General
Felipe García Vallejo, Subdirector de Programas de Desarrollo Científico y Tecnológico

Comité Organizador
Rafael M. Gutiérrez Salamanca, Jefe Programa Nacional de Ciencias Básicas
Liliana Castro Vargas, Asesora Subdirección de Programas de Desarrollo Científico y Tecnológico
Angela Patricia Bonilla Ramírez, Coordinadora Comunicación Institucional

Diagramación: Daniel Navas Contreras, Diseñador Gráfico Comunicación Institucional

Publicado en 2006 por COLCIENCIAS

© 2006

"Esta publicación ha sido realizada con la colaboración financiera de Colciencias, entidad cuyo objetivo es impulsar el desarrollo científico, tecnológico e innovador de Colombia."

Queda PROHIBIDA la reproducción, total o parcial, de este material con ánimo de lucro, su utilización se puede realizar con carácter académico, citando la fuente.

ISBN 958-8290-04-X
Impreso en Colombia por: Panamericana Formas e Impresos S.A.
Indice

Instalación

Conferencia plenaria. Átomos Fríos en Redes Ópticas

Preguntas

Conferencia plenaria. El premio Nobel y el Futuro de la Ciencia.
Ívar Giaever

Preguntas

Conversatorio con Ívar Giaever. Presentación
Interviene Ívar Giaever.

Preguntas

Conferencia plenaria. Una Aplicación al Conflicto armado de sistemas dinámicos no lineales. José Fernando Isaza

Preguntas

Conferencia plenaria. Física y Sociedad. Rafael Gutierrez.

Conferencia plenaria. Energía, creatividad y crecimiento económico. Reiner Kümmel

Preguntas

Mesa redonda I. Moderador Eduardo Posada Flórez

Intervención Eduardo Posada Flórez
Intervención de Cecilia López Montaño

Intervención de Gerardo Remolina, S.J.

Intervención de Rafael Mejia López

Intervención de Juan Sebastián Betancourt

Preguntas

Interviene Cecilia López

Interviene Gerardo Remolina

Interviene Juan Sebastián Betancourt

Interviene Cecilia López

Interviene Gerardo Remolina

Interviene Rafael Gutiérrez

Interviene Juan Sebastián Batancourt

Interviene Cecilia López

Interviene Eduardo Posada

Interviene Gerardo Remolina

Interviene Juan Sebastián Batancourt

Interviene Cecilia López

Interviene Juan Sebastián Batancourt

Interviene Cecilia López

Interviene Gerardo Remolina

Interviene Eduardo Posada

Mesa Redonda II. Moderador Rafael Hurtado. Director del

Departamento de Física de la Universidad Nacional de Colombia

Interviene Rafael Hurtado

Interviene Javier Botero

Interviene Rafael Hurtado

Interviene Carlos Angulo

Interviene Rafael Hurtado

Interviene Reiner Kümmel

Pág. 75
Pág. 77
Pág. 80
Pág. 81
Pág. 83
Pág. 83
Pág. 83
Pág. 84
Pág. 85
Pág. 85
Pág. 86
Pág. 86
Pág. 87
Pág. 87
Pág. 88
Pág. 88
Pág. 89
Pág. 90
Pág. 90
Pág. 90
Pág. 91
Pág. 93
Pág. 93
Pág. 94
Pág. 95
Pág. 95
Pág. 96
Pág. 96
Interviene Rafael Hurtado
Interviene Luis Enrique Arango
Interviene Rafael Hurtado
Interviene Alfredo Hoyos
Interviene Rafael Hurtado
Interviene Javier Botero
Interviene Rafael Hurtado
Interviene Alfredo Hoyos
Preguntas
Interviene Javier Botero
Interviene Carlos Angulo
Interviene Reiner Kümmel
Interviene Javier Botero
Interviene Carlos Angulo
Interviene Javier Botero
Interviene Reiner Kümmel
Interviene Luis Enrique Arango
Interviene Rafael Hurtado

Mesa Redonda III. Moderador Bernardo Gómez. Director del Departamento de Física de la Universidad de los Andes

Interviene Bernardo Gómez
Interviene Manuel Elkin Patarroyo
Interviene Bernardo Gómez
Interviene Mary Falk de Losada
Interviene Carolina Isaza
Interviene Angela Camacho
Interviene Patricia Camacho
Preguntas
Interviene María del Rosario Guerra de Mesa
Pág. 122
Interviene Carolina Isaza
Pág. 122
Interviene Angela Camacho
Pág. 123
Interviene Carolina Isaza
Pág. 123
Interviene Mary Falk de Losada
Pág. 123
Interviene Manuel Elkin Patarroyo
Pág. 124
Interviene Bernardo Gómez
Pág. 126

Clausura. Intervención de María del Rosario Guerra de Mesa.

Directora del Instituto Colombiano para el Desarrollo de la

Ciencia y la Tecnología “Francisco José de Caldas” Colciencias
Pág. 127

Intervención de Eduardo Posada Flórez. Director del Centro

Internacional de Física.

Síntesis de las discusiones del Simposio
Pág. 129

Intervención del doctor Ívar Giaever. Premio Nobel de Física, 1973
Pág. 130

Intervención de Álvaro Uribe Vélez,

Presidente de la República de Colombia
Pág. 131

Preguntas
Pág. 134
Instalación

Intervención de María del Rosario Guerra de Mesa,
Directora General de Colciencias

Bienvenidos al Simposio Física y sociedad: Año Mundial de la Física, 2005. Profesor Ivar Giaever, Premio Nobel de Física; profesor Reiner Kümme, de la Universidad de Würzburg (Alemania); doctora Ana María Rey Avala, Física de la Universidad de los Andes, recientemente ganadora del premio a la mejor tesis doctoral en la Universidad de Maryland —es la primera vez que una mujer gana este reconocimiento— y actualmente vinculada al Instituto de Física Atómica y Molecular de la Universidad de Harvard; doctor Felipe García, Subdirector de Programas de Desarrollo Científico y Tecnológico de Colciencias, doctor Rafael Gutiérrez, Jefe del Programa de Ciencias Básicas de Colciencias, señores rectores de las universidades colombianas, señores empresarios y presidentes de gremios, señores ex directores de Colciencias, señores panelistas, señores profesores, estudiantes, señoras y señores.

Hoy comenzamos el Simposio Física y sociedad: Año Mundial de la Física, 2005, organizado por el Programa Nacional de Ciencias Básicas. Este evento tiene dos propósitos, fundamentalmente: el primero es contribuir a que Colombia participe activamente en la celebración del Año Mundial de la Física. Este año fue declarado año mundial de la física por múltiples organizaciones internacionales y nacionales —como Naciones Unidas, el Congreso de los Estados Unidos, la Unión Europea, gobiernos, universidades, centros de investigación y grandes empresas de todo el mundo— para conmemorar el aniversario número cien de aquel momento (1905) en el que Albert Einstein hizo una contribución al conocimiento, contribución que continúa siendo fundamental en el desarrollo científico, tecnológico y social.
El segundo propósito es contribuir a hacer más evidente la importancia del desarrollo de la física, en particular, y del desarrollo científico, en general, en el desarrollo económico y cultural de la sociedad. El esfuerzo se ha concentrado en convocar a importantes personalidades nacionales e internacionales de diferentes sectores sociales en los cuales no es muy evidente su relación con la física o de cómo su desarrollo depende del desarrollo de la física; también hemos convocado a físicos que han logrado establecer relaciones más estrechas con otros sectores sociales.

Tanto las conferencias plenarias como las mesas redondas que se realizarán después de cada una de ellas pretenden propiciar un ambiente creativo y espontáneo dirigiendo a aprovechar la experiencia y la idoneidad de nuestros invitados especiales para que ustedes observen, desde diferentes puntos de vista, la importancia del desarrollo de la física en sectores tan diversos como el gobierno, el comercio, la política, la industria, los medios de comunicación, la educación y, en general, en la vida cotidiana.

Las dinámicas mundiales hacen que el desarrollo de una sociedad dependa cada vez más de la integración de los diferentes sectores que la constituyen; ningún sector puede salir a competir en las complejas dinámicas mundiales modernas si no cuenta con un importante apoyo de los demás sectores. Como ellos se necesitan mutuamente, deben aprender a desarrollar mejores formas de comunicación y apoyo para enfrentar aspectos políticos, comerciales, administrativos, productivos, científicos y tecnológicos simultáneamente y coordinadamente.

Esta integración de capacidades, saberes y experiencias debe suceder en todos los niveles y en todos los sectores, generando nuevas posibilidades de incremento en los indicadores económicos más relevantes, tales como la oferta de bienes y servicios de alto valor agregado con demanda nacional e internacional. Esto incluye la integración de los diferentes actores involucrados tanto en la generación como en la gestión del conocimiento. En el proceso de generación del conocimiento, la academia es uno de los actores más directamente involucrados, así como lo es el sector productivo en la gestión del conocimiento; en estos dos casos, se dispone de un fuerte apoyo del Estado, a través de los recursos y de las reglas de juego que ofrecen la legislación y la política misma.

No es fácil generar estos procesos de integración porque demandan nuevas formas de capacitar el recurso humano. Además de necesitar una fuerte formación disciplinar, los individuos deben también contar con criterios y herramientas que trasciendan su disciplina y la especialidad que practican para explotar verdaderamente las posibilidades que ofrece la interdisciplinariiedad.

Consecuente con estas exigencias del desarrollo de conocimiento a nivel mundial, Colciencias —como Secretaría Técnica y Administrativa del Sistema Nacional de Ciencia y Tecnología y del Sistema Nacional de Innovación— está propiciando un proceso
de integración, modernización y fortalecimiento de las estructuras del conocimiento nacional tendiente a favorecer, en particular, la generación y la apropiación del conocimiento interdisciplinario.

Por interdisciplinariedad no sólo entendemos la colaboración de diferentes disciplinas para enfrentar un problema más contextualizado y más directamente relacionado con necesidades urgentes de la sociedad, sino que también entendemos por interdisciplinariedad la integración de los diferentes sectores que conforman la sociedad. Aquí es muy importante destacar que la interdisciplinariedad no es posible sin un fortalecimiento permanente de las disciplinas fundamentales y relacionadas con la innovación.

En el caso particular de la Física, las tendencias interdisciplinarias no son nuevas; esto se evidencia en una serie de áreas o disciplinas del conocimiento, como la biofísica y la ciencia de materiales, que surgen como necesidad de responder a problemas que necesitan la contribución de más de una disciplina básica, como en el primer caso, o de disciplinas básicas y aplicadas, como en el segundo. Más recientemente ha surgido un gran número de ciencias o tecnologías interdisciplinarias en las que la Física tiene un papel muy importante que se enfocan en problemáticas de espectro muy amplio, sin que por ello dejen de tener preguntas muy bien definidas. Para mencionar algunas de las más importantes que han surgido y se han ido definiendo en los últimos años basta con recordar la biotecnología, las nanociencias, las nanotecnologías, la neurociencia.

Menciona en particular dos nuevas especialidades para resaltar la importancia que tiene el desarrollo de la Física en otros sectores de la sociedad diferentes al académico, al científico y al tecnológico y que no son muy evidentes: la econofísica y la sociofísica. En buena medida, esto ha permitido que los físicos hayan llegado a encontrar nuevos ambientes de trabajo y ocupar cargos muy importantes en sectores como la banca, la administración pública, las grandes empresas privadas, adicionalmente a la academia y la investigación.

Otro aspecto indispensable para que Colombia sea capaz de sumarse a las tendencias del conocimiento moderno y, en particular, al desarrollo de la interdisciplinariedad fundamental y aplicada es la construcción de masas críticas suficientes para generar procesos creativos y dinámicos, tanto en las disciplinas como en las áreas que son interdisciplinarias. La cantidad o la suficiencia mínima siempre es importante, en especial para un país del tamaño de Colombia, con más de 40 millones de habitantes, que hay que llevar a que participen de todos estos procesos. La gente se convierte en nuestro mejor recurso precisamente para generar más riqueza.

La contribución de Colombia al desarrollo de la Física en el mundo ha sido muy incipiente, y aún lo es; aunque se han realizado esfuerzos importantes, éstos deben ser
redoblados para construir ese capital humano mínimo necesario para ser un país que obtenga verdaderos beneficios de la apropiación del conocimiento moderno. Tenemos que reconocer que la física en Colombia es relativamente muy joven y apenas ahora está adquiriendo la madurez suficiente y las correspondientes demandas para comenzar a tener relevancia en el mundo y mayor impacto en el desarrollo nacional. Podemos decir que Don Julio Garavito Armero (1865-1920) fue el primer científico colombiano, gracias a sus contribuciones a la Física, las Matemáticas y la Astronomía, que le merecieron reconocimiento a nivel nacional e internacional.

La Sociedad Colombiana de Física se crea, apenas, en 1955 y en el 2005 conmemora sus primeros 50 años. El primer Departamento de Física se funda en 1959 y dos años después se crea la primera carrera de Física, los dos en la Universidad Nacional de Colombia. Un año después se crea la segunda carrera de Física, en la Universidad del Valle; seis años después, en 1968, se crea la tercera carrera de Física, en la Universidad de Antioquia y, coincidentemente, en ese años inicia labores Colciencias.

No fue sino hasta 1969, con el determinante apoyo de Alemania, cuando se inició la primera maestría en Física en la Universidad Nacional, dando comienzo así, organizada y formalmente, a la investigación disciplinaria de Física en Colombia. En 1978 se crea la cuarta carrera de Física, en la Universidad de los Andes, y en 1984, la quinta, en la Universidad Industrial de Santander.

Recientemente, en 1986, se creó el primer doctorado en Física en la Universidad Nacional de Colombia y en 1991, con la creación del Sistema Nacional de Ciencia y Tecnología, se fortalece la formación en Física con el Programa Nacional de Ciencias Básicas. En los años 1990 y 2000 se crearon otras cuatro carreras de pregrado en Física, completando hoy 250 profesores, aproximadamente, vinculados a las universidades en el área de Física (cerca de la mitad de ellos tiene título doctoral). Entre los años 1992 y 2003, Colciencias ha beneficiado alrededor de 210 personas para hacer su doctorado en Física y 82 para maestrías en esta misma área, de un total de 1.000 beneficiarios de los programas de crédito condonable para hacer estudios de doctorado y maestría en el exterior.

Hoy, cien años después del año maravilloso de Einstein, Colombia puede decir que comienza a tener la infraestructura necesaria para iniciar una nueva época de contribución significativa y continua en la Física pura y en la aplicada, con reconocimiento internacional y gran impacto en el desarrollo social colombiano. Han egresado de nuestras universidades 1.500 físicos en pregrado; 400 tienen título de maestría —tanto en el exterior como nacionales— y, como ya lo había mencionado, más de 210 han sido formados en el exterior.
Todos ellos se desempeñan en sectores tan diversos como la medicina, la economía, la administración pública, el sector productivo y, por supuesto, en la academia y la investigación. Sin embargo, para que ese potencial se haga realidad, en beneficio de todos los colombianos y de la comunidad internacional, necesita mucho más apoyo y más reconocimiento por parte de todos los sectores que constituyen la sociedad colombiana.

No quiero terminar sin antes agradecer a todo el equipo de Colciencias, a los profesores, a todos los panelistas y a todo el público por haber aceptado nuestra invitación a participar en este Simposio, que hemos organizado aprovechando la celebración del Año Mundial de la Física. Los invito, igualmente, a que continuemos construyendo país con base en la generación y el uso del conocimiento y a reconocer que, en ese proceso, la Física es básica.

Muchas gracias.
Conferencia plenaria

Átomos fríos en redes ópticas
Ana María Rey Ayala

Antes de comenzar quisiera dar las gracias muy especialmente a la doctora María del Rosario Guerra, Directora de Colciencias, por la invitación que me hizo a participar en este Simposio y de contarles un poco en qué consistió mi tesis de doctorado. Mi principal interés es motivarlos y mostrarles lo interesante que es este campo de la Física y, sobre todo, el potencial que tienen estos sistemas atómicos para contribuir al desarrollo de la humanidad.

Realicé mi trabajo de doctorado en un programa conjunto en el Instituto Nacional de Estándares y Tecnología y la Universidad de Maryland. El Instituto fue creado con el propósito de establecer los estándares de medida de la comunidad norteamericana, pero tiene como una de sus misiones propiciar el desarrollo tecnológico y apoyar el desarrollo de la Física y de la ciencia en general. El asesor de mi trabajo en el Instituto fue el doctor Charles Clarke, y los asesores de la Universidad de Maryland fueron Keith Patrick y colaboradores.

Quiero comenzar recordándoles qué es un átomo. Los átomos son los componentes básicos de la materia en el sentido de que todo elemento de la materia está formado por átomos. Tal vez una definición exacta de lo que es un átomo sería decir que un átomo es la partícula más pequeña de un elemento que mantiene todas las propiedades químicas del mismo. Por supuesto, los átomos no son partículas fundamentales porque están compuestos por otras partículas más pequeñas, neutrones, protones y electrones, y éstos, a su vez, están compuestos por otras partículas más fundamentales. Lo que quiero mostrar es que hay una clasificación general de los tipos de partículas que hay en el universo. Hablamos de bosones y de fermiones.
El nombre de bosón fue introducido en honor de Nath Bose y el de fermión fue introducido en honor a Enrico Fermi. Los bosones tienen la propiedad de que tienden al mismo estado, tienden a ser lo mismo al mismo tiempo, mientras que los fermiones se rigen por el principio de exclusión de Pauli, que prohíbe estar a dos fermiones en el mismo estado. Los fermiones, pues, tienden a estar todos en un estado diferente. Vamos a ver el ejemplo de fermiones en elementos fundamentales, como protones, neutrones o electrones, mientras que los bosones son partículas más compuestas. Aunque la gente considera los bosones como ‘aburridos’, porque todos tienden a hacer lo mismo, en esta charla voy a hablar de bosones y les voy a demostrar que, en realidad, son muy interesantes.

Aunque el concepto de temperatura es algo muy cotidiano, cuando físicamente se habla de temperatura se hace de una forma cuantitativa, porque se refiere a una medida de la energía o de la velocidad de movimiento de los átomos. El objeto está caliente cuando los átomos que lo constituyen se están moviendo rápidamente, mientras que está frío cuando los átomos se mueven muy lentamente. Para medir, de una forma cuantitativa, si un objeto es frío o caliente hemos introducido escalas de temperatura. Una escala de temperatura muy empleada en Física es la escala Kelvin porque el 0 de Kelvin corresponde al mínimo de temperatura que se alcanza en el universo. Hay otras escalas, algunas muy conocidas por el común de la gente. Por ejemplo, la escala Celsius. Para hacer la relación entre la escala Kelvin y la Celsius es necesario restar 273 grados; en este sentido, la escala Kelvin alcanza temperaturas negativas.

A 300 grados Kelvin, aproximadamente, estaríamos a temperatura ambiente; a medida que disminuye la temperatura, por ejemplo la congelación del agua (medida en la escala Celsius sería a 0° centígrados) correspondería a 273° K. Si bajáramos un poco más la temperatura, por ejemplo el hielo seco, estaríamos a 205° K. Si bajamos un poco más la temperatura, por ejemplo cuando se empiezan a ver efectos ya no tan cotidianos, como la congelación del nitrógeno, a 77° K (recordemos que el nitrógeno es uno de los elementos más importantes del aire y, por tanto, a esta temperatura comienza a condensarse). Si bajamos más la temperatura, hasta llegar a 3° K, que es la temperatura del espacio exterior. La temperatura mínima, el 0 absoluto, implica que todo se detiene.

La temperatura se relaciona con la velocidad de movimiento. A temperatura ambiente, los átomos se mueven excesivamente rápido, casi a la velocidad del sonido, es decir, 300 metros por segundo, mientras que si la temperatura baja a tan sólo 77° K, los átomos se mueven a la mitad de esa velocidad (150 m/s). Si bajamos a 4° K (que es la congelación del helio) los átomos se mueven a 90 m/s. Uno de los descubrimientos más importantes del siglo XX fue realizado en un laboratorio en 1995, cuando los científicos lograron enfriar cientos de miles de átomos a menos de una diezmillonésima de Kelvin.
A esta temperatura, los átomos tienen apenas una velocidad de unos cuantos metros por segundo. Este descubrimiento abrió la puerta a una nueva ciencia.

¿Qué ocurre a bajas temperaturas? A temperatura ambiente estamos acostumbrados a la Física clásica, a medida que baja la temperatura se hace cada vez más necesaria la Física cuántica. El principio básico es el principio de la dualidad onda-partícula que fue establecido por L. V. de Broglie, teoría por la cual recibió el Premio Nobel en 1929. Este principio establece que cualquier forma de materia se comporta tanto onda como partícula al mismo tiempo. Si estamos a la temperatura ambiente, los átomos tienen, de todas formas, una onda asociada, pero es tan pequeña que domina el comportamiento de partícula. Podemos tratar los átomos clásicamente, como si fueran unas bolas de billar, colisionando unos con otros, con cierta velocidad media y con cierta distancia entre ellos. Este enfoque corresponde a la Física newtoniana.

A medida que bajamos la temperatura, el comportamiento onda comienza a dominar y comenzamos a tener acceso a un nuevo mundo, a una nueva Física, la Física cuántica. En el momento en el que la longitud de onda de los átomos es comparable con la distancia media entre ellos, las propiedades cuánticas empiezan a ser fundamentales y los átomos —que son bosones— exhiben una transición y forman un nuevo estado de la materia que se conoce como Condensación de Bose-Einstein. Temperaturas más bajas hacen que todos los átomos formen este condensado; así tenemos acceso a una onda gigante de materia, de tamaño macroscópico, en la que podemos observar la física cuántica. Esto fue lo que abrió la condensación de Bose-Einstein: una nueva ventana para la Física.

Un condensado de Bose-Einstein, BEC, es una nueva forma de materia que ocurre para átomos bosónicos a muy bajas temperaturas. Como los bosones tienden a ser todos lo mismo, tienden a ocuper el mismo estado cuántico, el mismo estado básico de mínima energía y forman una onda gigante de materia. El nombre de Bose-Einstein se debe a que en 1924 Bose predijo el fenómeno para la luz; en 1925 Albert Einstein lo predijo para los átomos. Y aunque fue predicho en 1925, sólo setenta años más tarde fue creado en laboratorio por Eric Cornell y Carl Weiman, del Instituto Nacional de Estandares y Tecnología y de la Universidad de Colorado, y Wolfgang Ketterle, del MIT. Ellos crearon el condensado utilizando átomos de rubidio.

¿Cómo lograron enfriar el gas? Hay dos pasos. El primero se conoce como enfriamiento láser, que lleva a temperaturas del orden de una millonésima de Kelvin. El método fue desarrollado por Steven Chu, Claude Cohen Tannoudji y William Philips, quienes recibieron el Premio Nobel en 1997 por este desarrollo. La idea que tuvieron estos científicos es que los átomos se pueden enfriar si los bombardeamos con luz, pues al hacer esto se logra reducir la velocidad y, por tanto, enfriarse. Como un gas está
compuesto de muchos átomos moviéndose en direcciones diferentes, lo que hay que hacer es enfriarlos aplicando luz láser en todas las direcciones. Sin embargo, cuando un átomo absorbe la luz, vuelve a emitirla después de un tiempo y esto no permite alcanzar la temperatura tan baja requerida para formar un BEC, razón por la cual se requieren técnicas adicionales.

El segundo proceso, que llevó a que le otorgaran el Premio Nobel a Eric Cornell, Carl Weiman y Wolfgang Ketterle en el 2001, permitió realizar el condensado de BEC. Con este procedimiento se logran temperaturas de hasta cien mil millonésimas de Kelvin. Cada átomo tiene asociado un pequeño imán, un momento magnético; aplicando un campo magnético se atrapan los átomos. Si se aplica el campo magnético en forma adecuada se logra que los átomos calientes se escapen y que en el fondo queden los átomos fríos y estos son los que se condensan porque logran la temperatura tan baja que se requiere para formar un BEC. Ahora hay más de 20 laboratorios formando BEC no sólo con átomos simples, como rubidio, sodio, litio, hidrógeno, cesio, sino con átomos más complejos como helio, terbio y, más recientemente, cromo.

¿Cómo hacen en el laboratorio para saber que si se obtuvo un BEC? En el laboratorio se crean aproximadamente cien mil átomos de condensado, pero están rodeados por una nube de átomos térmicos. Para observarlos, apagan todos los campos magnéticos y dejan que la nube se expanda como función del tiempo. Al expandirse después de un tiempo, toman una imagen iluminando la muestra con un láser apropiado que los átomos absorben. La imagen es un reflejo de la distribución de velocidades que tenían los átomos cuando se apagaron los campos magnéticos.

Ahora podemos manipular estos átomos a nuestro antojo. Aquí es donde entra el concepto de redes ópticas. El concepto de red óptica es muy sencillo. Tenemos estos átomos fríos y los iluminamos con láseres que se propagan en direcciones opuestas y el efecto de los láseres sobre los átomos es que éstos experimentan una fuerza que es proporcional a la intensidad de los láseres. Si tenemos dos láseres propagándose en direcciones opuestas, los láseres interfieren formando una onda estacionaria y los átomos quedan atrapados en el fondo. Esto es lo que se conoce como una red óptica. En este sistema, los experimentalistas tienen un control muy grande. Por ejemplo, si se modifica la frecuencia del láser, se rota la red; si cambian la longitud de onda del láser, logran disminuir un poco la distancia entre los pozos; si aumentan la intensidad de los láseres, logran que la profundidad de los pozos aumente, y si cambian la configuración de los láseres, cambia la geometría de la red. Es un perfecto control experimental sobre estos sistemas.

¿Por qué son útiles? Porque los átomos en estas redes ópticas son similares a los electrones en redes cristalinas, que es de lo que están formados todos los sólidos en el
mundo, y, por tanto, los experimentalistas pueden manipular como deseen estas redes ópticas. Los átomos en redes ópticas son análogos atómicos de los sistemas de materia condensada y, por tanto, ofrecen la posibilidad de resolver problemas abiertos que todavía no se han podido resolver en estado sólido. Un ejemplo son las transiciones de fase, uno de los fenómenos más difíciles de modelar. Por ejemplo, la transición de superfluído a Mott; otra transición que todavía no ha sido entendida en estado sólido es la superconductividad a altas temperaturas, que tiene grandes aplicaciones técnicas.

Los átomos neutros, usando esta transición de fase, han sido propuestos para implementar un computador cuántico. La tecnología avanza increíblemente rápido, tanto que aproximadamente cada 18 meses aparece un procesador con el doble de velocidad del anterior y cada vez más pequeño. Hace 50 años, un computador ocupaba todo un cuarto; hoy hay microchips de apenas una micra de tamaño. Entonces, si se van a seguir reduciendo las cosas a unos pocos átomos, ya la Física clásica no va a servir, sino que hay que aplicar la Física cuántica.

Por eso tenemos que adaptar toda la tecnología clásica a la tecnología cuántica. ¿Cuál es la ventaja de un computador cuántico? Un computador ‘clásico’ trabaja a partir de bits; un bit es un sistema físico que tiene dos estados diferentes —sí, no; falso, verdadero; 0, 1—. Un quantumbit, para un computador cuántico, tiene la ventaja de que no sólo tiene los valores 0, 1, sino, al mismo tiempo, la superposición de estados. Es decir, en un computador ‘clásico’ puedo tener un registro con n bits y, entonces, tengo la posibilidad de formar 2n estados posibles, pero mi computador sólo va a tener un estado almacenado durante cierto tiempo. El computador cuántico, por el contrario, permitirá tener acceso a todos los 2n estados al mismo tiempo, lo que permite realizar varias operaciones paralelamente.

Hay mucha competencia y muchas investigaciones tratando de realizar este computador cuántico. Entre los sistemas propuestos están los iones atrapados. Los iones son partículas cargadas y, por tanto, interactúan mucho unos con otros, lo que permitiría hacer operaciones bastante rápido; pero también interactúan con el medio ambiente, por lo que se puede presentar decoherencia y pérdida de información también muy rápido. Otra propuesta es la de los electrones en semiconductores. La otra propuesta, en la que me voy a concentrar, es la de átomos neutros atrapados en redes ópticas. Para esto, vamos a usar una transición cuántica de fase, que se llama la transición del superfluído a aislante de Mott. Una transición de fase es un cambio de estado al variar algún parámetro. En la transición cuántica de fase en este caso va a ser la repulsión entre los átomos y pasaremos de un estado superfluído a un estado aislante de Mott, porque en el superfluído predomina una energía en movimiento y en el aislante de Mott predomina la energía de repulsión.
Un superfluído ocurre cuando la barrera de la red óptica es bajita, la repulsión entre los átomos es baja y, por tanto, los átomos tienen suficiente energía como para pasar de un pozo a otro, estar dos átomos en el mismo sitio y, como el costo de energía es bajo, es bueno para el sistema, porque éste lo realiza. Los átomos tienden a pasar de un pozo a otro, hay fluctuaciones en el número de átomos al pasar de un pozo a otro, dada la baja repulsión entre los átomos. En cambio, cuando se habla de un aislante Mott la barrera es alta, en este caso, como la barrera es alta, el costo de energía de tener dos átomos en un mismo pozo es bastante alto y el sistema no lo acepta, porque le cuesta demasiada energía. Finalmente, tendremos un átomo por pozo, ubicados en el fondo de cada pozo. No hay fluctuaciones en número, debido a la alta repulsión entre átomos. Y esto es lo que interesa para un computador cuántico.

Una transición de fase es uno de los procesos más complicados en la Física y yo lo represento con una montaña porque es muy difícil de describir. En el régimen no interactuante, que es el fácil de tratar, mi contribución fue derivar soluciones analíticas al problema de un único átomo, pero en presencia de la red óptica y de un campo magnético. Lemostré que, a pesar de que las soluciones para un átomo son muy sencillas, pueden ayudar a entender el problema complejo en el que los átomos están completamente interactuantes. Esto, para un físico, es un sueño, porque podemos describir, en términos sencillos, un proceso muy complicado.

En el sistema superfluído, en el que las interacciones son un poco más importantes, mi contribución fue derivar una expresión de la superfluidez conectada a parámetros característicos de los sistemas atómicos que se pueden medir en el laboratorio. En el sistema correlacionado desarrollé técnicas capaces de describir la dinámica en este régimen y aplicarlas a modelar experimentos usados para crear un computador cuántico Dentro de estos experimentos está el de la súper red. Finalmente, en el régimen de Mott, mi contribución fue proponer experimentos que son capaces de medir la temperatura de los átomos en esta fase. Saber qué tan calientes están los átomos es importantsísimo porque se necesitan temperaturas casi cero para poder implementar un computador cuántico. Además, introduce un protocolo que hace de la transición de Mott un mecanismo robusto para iniciar un computador cuántico.

El trabajo sobre la dinámica de la súper red estuvo motivado por una investigación que hicieron en el Instituto y en la que cargaron una red con los átomos cada tres pozos. Con un condensado en una red unidimensional superpusieron otra red con periodicidad tres veces más corta, de tal manera que el sistema queda atrapado en la combinación de estas dos redes. Lo que hicieron fue apagar la red larga, de tal manera que los átomos quedan atrapados cada tres pozos. Para realizar un computador cuántico es necesario saber dónde están los átomos individualmente por pozo, pero si están unos
pegados con otros todavía no se tiene la resolución suficiente para manejarlos. Si logran hacer el experimento y conseguir mayor espaciamiento es posible manipularlos. El problema es que este estado va a continuar evolucionando con el tiempo y la pregunta que se hacían los experimentalistas era qué pasa con este sistema, cómo va a evolucionar.

Usé las teorías que se habían aplicado hasta el momento en Física atómica, que son las teorías de campo medio, porque si vamos a modelar cómo se comportan muchísimos átomos, lo que hay que hacer en realidad es modelar cómo se comporta cada átomo individualmente y cómo se comportan en conjunto. Para lograr esto hay que hacer aproximaciones. Una aproximación es que todos los átomos pueden describirse por la misma función de onda, es decir, se asume que todos los átomos son condensados. Esto es válido a bajas temperaturas. También se asume que no hay que saber lo que hace cada átomo, sino que con saber lo que hace el promedio se puede modelar lo que hace cada átomo.

Usando esas teorías de campo medio, lo que hice fue aprovechar que las condiciones inicialmente periódicas del sistema me permitieron reducir el problema de muchísimos pozos a tan sólo dos, porque los átomos inicialmente ocupados se comportan igual y, aunque hay dos pozos vacíos, cada cual tiene a un lado uno ocupado y al otro lado uno vacío. Entonces, esos dos también se comportan igual. Lo que encontré es que en teorías de campo medio se reduce a considerar dos casos, cuando la barrera es baja y cuando la barrera es alta. Las simulaciones analíticas que hice me mostraron que cuando la barrera es baja los átomos tienen suficiente energía y van a tunear desde los pozos ocupados a los vacíos y después van a devolverse. Aunque nunca quedan los pozos completamente vacíos, comienzan a pasar periódicamente de uno a otro. Por el contrario, cuando la barrera es alta, la energía de repulsión es demasiado alta y sólo unos pocos átomos pasan a los pozos vacíos. Esto es lo que se conoce como atrapamiento macroscópico cuántico y este sistema nunca se había observado experimentalmente. En el experimento nunca vieron estas oscilaciones periódicas, lo que indica que algo estaba fallando en las teorías de campo medio.

Para ver qué era lo que fallaba hicimos simulaciones numéricas en las que consideramos todos los posibles estados del sistema. Lo que pasa es que en un computador clásico sólo podemos hacer unos pocos átomos y unos pocos estados. Si tenemos seis átomos y tres pozos, el número de estados que podemos simular es tan sólo de 84; si aumentamos en diez el número de átomos y en diez el número de pozos, tendríamos que modelar cuatrillones de estados y esto no lo hace un computador clásico. Por eso modelamos qué pasa en sistemas pequeños, vemos cuándo falla y cuándo no y a partir de eso tratamos de sacar teorías más complejas. Lo que encontré fue que, cuando la
barrera es baja, las teorías de campo medio funcionan perfectamente; cuando la barrera aumenta, ya no funcionan las teorías.

Lo primero que se encontró es que en vez del comportamiento periódico, llega un momento en el que se estabiliza y todos los pozos quedan con el mismo número de átomos. Lo segundo fue que el número de átomos condensados desaparece. La cosmología ya ha desarrollado teorías más complejas que las del campo medio y se pueden adaptar a los sistemas atómicos. Y, aunque el tamaño de las ecuaciones aumentó considerablemente, estas teorías sí lograron predecir el decaimiento de los átomos.

Voy a referirme ahora a la inicialización del registro cuántico. Como comenté antes, se necesita la transición de Mott para inicializar el computador cuántico, pero el requisito es que se tenga exactamente un átomo por pozo. Esto teóricamente es muy fácil, pero en el experimento no es tanto, puesto que resulta muy difícil controlar que, si va a haber cen mil átomos en un pozo, no haya cien mil uno. La propuesta fue que usábamos el campo magnético que confina los átomos. Si hay más pozos que átomos, como en el caso experimental, se aplica el campo magnético colectando todos los átomos en el centro. Así se pueden ver dos átomos por pozo. Lo que propuse fue encontrar para qué pozo magnético adecuado era energéticamente más favorable, en vez de apilarse los átomos en el centro, extenderse y poder lograr exactamente un átomo por pozo.

Sin embargo, siempre hay una posibilidad de tener dos átomos por pozo. La propuesta fue tener una forma de detectar cuándo hay dos átomos por pozo: iluminamos el sistema con un láser adecuado de tal forma que, si hay dos átomos por pozo, los átomos absorben la luz, crean una molécula —por el proceso que se llama fotoasociación—. Después de un tiempo, la molécula va desexcitarse y emite luz que puede ser detectada.

Espero haber logrado transmitir, con esta charla, lo interesante que es estudiar átomos en redes ópticas y el potencial que tienen estos sistemas para contribuir al desarrollo de la humanidad.

Muchas gracias.

Preguntas

P. Si bien dijo que los átomos se comportan como bosones, sabemos que tienen una estructura dada por fermiones, ¿cómo influye este comportamiento a muy bajas temperaturas? La segunda pregunta es ¿qué se ha hecho para lograr que el computador cuántico ambién sea útil para trabajar a temperatura ambiente?

R. A muy bajas temperaturas, el comportamiento de las partículas fundamentales que conforman los átomos no es importante; para estudiar el comportamiento de los
componentes individuales se necesitan temperaturas mucho más altas. Sin embargo, el proceso opuesto si se ha logrado; es decir, lo que se ha hecho en laboratorio son condensados de fermiones: si se aplica a dos fermiones una resonancia magnética es posible atraerlos y formar una molécula bosónica. En ese sentido, se puede decir que si se han explorado los componentes fermiones y bosones y es un tema de bastante auge en este momento.

En cuanto a las temperaturas del computador cuántico, es cierto que todavía falta mucho por trabajar, pero ya se ha avanzado. Es un proceso largo y yo pienso que si se logra realizar va a ser en laboratorio, pero aún así es un desarrollo muy importante.

P. Usted mostró que las redes ópticas tienen la gran ventaja de disminuir el desorden, ¿cuál es el efecto del desorden?

R. Primero, por ser ópticas, son perfectas. No hay desorden en las redes. El problema es que en los estados de materia condensada, en general, si hay defectos y eso no se puede controlar. Lo que se está haciendo en laboratorio es superponer dos láseres adicionales que crean un potencial cuasiperiódico, que actúa como potencial Randon, y simula lo que pasa efectivamente en los sólidos. Hay una gran cantidad de efectos, debido a las impurezas, que podemos modelar en forma controlada porque se puede ver cuanto desorden podemos introducir en los sistemas para ver qué pasa.
Conferencia plenaria

El Premio Nobel y el futuro de la ciencia
Ivar Giaever

Voy a referirme, en términos generales, al Premio Nobel y a lo que, creo yo, es el futuro de las ciencias. Si les interesa el Premio Nobel, les recomiendo este libro escrito por un sueco llamado Ragnar Zolman quien tuvo tanta responsabilidad en la creación de los Premios Nobel como la tuvo Alfred Nobel porque, cuando murió Nobel, la familia no quedó muy satisfecha con el testamento, pues la mayor parte de su fortuna estaba destinada a los premios. Zolman, que había sido asistente de Nobel, batalló en los tribunales y ganó los procesos que hicieron posible que hoy existan los premios Nobel. Hoy en día, los suecos están muy orgullosos de estos premios porque ellos le han dado a Suecia mucho reconocimiento internacional.

Ahora, ¿quién fue Alfredo Nobel? Nobel fue un sueco que se hizo famoso por haber inventado la dinamita; yo le digo a mis estudiantes que, mirada en retrospectiva, fue una invención muy fácil, aunque la gente cree que no lo fue tanto. Nobel fue a París y allá conoció a Natalian, quien sabía mucho sobre la nitroglicerina, un explosivo líquido muy volátil. Nobel estuvo mezclándolo con otros elementos para disminuir su volatilidad hasta que, al mezclarlo con un tipo de arcilla, logró inventar la dinamita. Claro que, mirado en retrospectiva, resulta muy fácil; pero en aquella época la invención lo hizo muy famoso... y muy rico.

Dentro de los premios que creó Alfred Nobel hay tres en ciencias, uno en literatura y el de la paz. El Premio Nobel de Economía realmente no fue creado por Alfred Nobel y, en estricto sentido, no es un Premio Nobel, pues fue establecido por el Banco Sueco para que fuera administrado por la Fundación Nobel –se otorgó por primera vez
hacia 1960—. Hay otra cosa curiosa con los Premios Nobel: con frecuencia la gente pregunta por qué no hay un Premio Nobel de Matemáticas, y al respecto hay una historia simpática según la cual no hay premio de Matemáticas porque un profesor de matemáticas le quitó la novia a Nobel; obviamente, se trata de una historia falsa.

Al parecer, Nobel estuvo enamorado de una escritora austriaca llamada Bertha Kinsky, pero nunca se casó. Yo pienso que la razón por la cual Nobel no creó un premio para las matemáticas era que él nunca estuvo interesado en esta área del conocimiento. Bertha Kinsky, que era una pacifista, escribió, en 1906, un libro muy famoso titulado Abajo las armas y terminó recibiendo el Premio Nobel de la Paz, y estoy seguro de que ella fue la razón por la cual Nobel decidió crear el Premio de Paz. En cuanto al Premio de Literatura, es obvio que era algo que le interesaba mucho a Nobel; de hecho, él escribió varias obras dramáticas, obras de teatro y poemas. Nobel no era una persona alegre, y eso se nota en muchos de sus poemas. Me parece que él, que era una persona depresiva, instauró el Premio de Fisiología y Medicina con la esperanza de que alguien ayudara a curar a las personas con depresión.

El testamento de Alfred Nobel, que hoy es muy famoso, dice lo siguiente: «el capital (...) constituirá un fondo cuyos intereses se distribuirán anualmente como recompensa a quienes, durante el año anterior, hubieran prestado los mayores servicios a la humanidad. El total se dividirá en cinco partes iguales, que se concederán así: uno a quien, en el ramo de las Ciencias Físicas, haya hecho el mejor descubrimiento o el invento más importante». Fijense que no dice que se otorgará a quien haya tenido profundos pensamientos o complicadas ideas sino a quien hubiera hecho un descubrimiento o una invención importantes en física, sin que eso implicara la necesidad de complejas teorías. Si hubiera sido así, yo nunca lo hubiera recibido, pues soy una persona muy sencilla. Lo mismo ocurre con los premios de Química y Medicina: Nobel quiso otorgar el premio a quienes hubieran hecho «descubrimientos» o «inventos» en estas áreas.

Veamos ahora cuál es la diferencia entre la ciencia y la tecnología. La mejor manera de plantearles esa diferencia es haciendo alusión al ajedrez. Cuando yo tenía tres o cuatro años veía permanentemente a mi padre jugando ajedrez; como yo era tan pequeño, él no me explicó las reglas del ajedrez; yo veía que las piezas se movían y me parecía un poco misterioso el movimiento. Trataba, entonces, de adivinar o descubrir cuáles eran las reglas que hacían que las distintas piezas se movieran de distinta forma. Esto es lo que hacen los científicos: se sientan a observar y tratan de averiguar cuáles son las reglas que gobiernan lo que se observa en la naturaleza porque la naturaleza, por sí misma, no nos las dice, sino que uno tiene que averiguar cuáles son esas reglas o tiene que ir a una universidad para que alguien le cuente cuáles son. A los tres años nadie me
iba a decir cuáles eran las reglas del ajedrez, pues era muy pequeño; pero yo me propuse aprenderlas mirando lo que hacían los jugadores con las distintas piezas.

En la Ingeniería se supone que uno debería saber cuáles son las reglas; por ejemplo, si uno quiere construir un puente, tiene que conocer cuáles son las reglas para construirlo y que el puente no se caiga. Pero uno no necesariamente tiene que conocer todas las reglas para construir el puente. Cuando yo jugué ajedrez competitivamente en la Universidad, me faltaban dos reglas por conocer y, aun así, gané el campeonato universitario de ajedrez. Posiblemente, si hubiera conocido todas las reglas hubiera podido llegar a ser un gran campeón de ajedrez en otros niveles; es decir, se puede construir el puente sin conocer todas las reglas, pero algo va a fallar.

En esta diapositiva muestro la foto de alguien muy importante para las Ciencias, y que es la razón por la cual estamos aquí reunidos: estamos celebrando sus famosos tres escritos —la gente dice que son cuatro, pero en realidad sólo fueron tres—: Albert Einstein, uno de los científicos que la mayoría de la gente reconoce fácilmente. Las personas en el mundo no saben quiénes son los científicos importantes; reconocen fácilmente a los políticos, a los deportistas, a los artistas y a los arquitectos, pero los científicos no suelen estar en la mira del público. Otro científico muy famoso e importante fue Tomás Alba Edison, el más famoso inventor del mundo. Einstein también fue inventor —por ejemplo, había patentado el refrigerador—. Como saben, Einstein recibió el Premio Nobel, pero Edison no lo hizo (estoy seguro de que si viviera, Tomás A. Edison hubiera recibido el Nobel).

Otro Premio Nobel muy famoso es Richard Feynman, quien dijo: «la era en la que vivimos es la era en la que todavía estamos descubriendo las leyes de la naturaleza y ese día nunca se repetirá». A uno le puede parecer curiosa esa afirmación de Feynman, pues, con todos los avances que ha habido en los últimos tiempos, se podría pensar que ya conocemos todas las reglas de la naturaleza. Así, pues, ¿por qué Feynman, quien murió en 1988, dijo esto? Feynman escribió un libro sobre la física clásica y, en sólo media página, hizo el listado de todas las leyes de la física clásica conocidas: son ocho leyes, con las cuales uno puede hacer de todo, desde construir una avión Boeing hasta construir un auto, pasando por construir una autopista. Sólo se le olvidó una cosa: que la energía se conserva. Y esto es algo tan evidente que tal vez por eso se le olvidó incluirla en el listado.

Las personas tienden a pensar que la física es algo muy complejo, que no se puede entender, y resulta que basta con tener esas nueve leyes. Las primeras cuatro son ecuaciones de Maxwell, escritas desde 1878, y que se refieren a todo lo que hay que saber sobre electromagnética. Los aparatos de telecomunicaciones que hoy usamos son, en la
mayoría de los casos, muy recientes, pero todos parten de las ecuaciones de Maxwell. Tu-
vimos que agregar la ecuación de Schrödinger, que nos permite explicar toda la química
—vean que ya tenemos diez ecuaciones que prácticamente explican toda la ciencia que
conocemos, cosa que es increíble: ¡todo reducido a unas cuantas ecuaciones!—. Como fí-
sico, uno podría decir que la Física es la ciencia fundamental y que la Química es apenas
una pequeña parte de la Física, manifestada en la ecuación de Schrödinger. También
Stephen Hawking, el famoso físico inglés, sostiene la misma teoría de Feynman.

Quiero mencionarles a otro Premio Nobel muy importante, Steven Weinberg,
uno de los más famosos de Estados Unidos, quien escribió El sueño de una teoría final,
libro en el que dice que la ciencia es algo finito y no que hay un número infinito de teo-
rías científicas. Si piensa que llegamos ya a esa etapa, salvo por la teoría sobre las parti-
culas fundamentales. Si Steven Weinberg pudiera definir en qué consisten las partículas
fundamentales, eso, de todas maneras, no nos afectaría, pues no tendría aplicación en
la vida ciaria. Las leyes que he señalado son las fundamentales para la sociedad y para
el mundo, y esto es lo interesante.

Uso puede preguntarse si la biología es muy compleja; la biología moderna se
debe, básicamente, a James D. Watson y Francis Crick, quienes produjeron la doble
hélice, por la cual recibieron el Nobel de Medicina en 1962 —recientemente Watson
escribió un libro que se titula ADN, en el que repasa todo lo que ha significado el
descubrimiento del ADN para la humanidad—. Watson señaló una vez que «la vida es
sólo una cuestión de física y química». Los científicos ya no creen que haya unas fuerzas
vitalles, sino que están convencidos de que la Física y la Química son las ciencias que
están detrás de todo en la vida.

Alora bien, ya la ciencia básica se conoce hoy en día; y un nuevo paradigma o
marco de referencia está emergiendo y consiste en que la acción se está alejando de las
ciencias básicas para dirigirse más hacia las ciencias aplicadas o, en otras palabras, ale-
jándose del descubrimiento de las leyes de la naturaleza para ir hacia la invención. Esta
es la mea de la ciencia hoy en día. Hacia 1900, cuando Röntgen descubrió los rayos X
se produjo una verdadera sorpresa porque era algo totalmente desconocido, no se tenía
la menor idea de lo que se trataba ni de la importancia que tendría este descubrimiento
para la humanidad. De hecho, Röntgen fue el primer científico que recibió el Premio
Nobel de Física. Röntgen usó los rayos X por primera vez sacándole una radiografía a
la mano de su esposa, y su descubrimiento fue muy útil después para sacar radiografías
da los soldados heridos en la Primera Guerra. Pero este tipo de descubrimientos ya no
ocurren de esta manera porque ya conocemos las leyes de la física.

Podríamos pensar también en otro descubrimiento importante para la humani-
dad: la resonancia magnética. La resonancia magnética no fue un descubrimiento sino
una invención de Paul Lauterbur, porque la ciencia que querría ese invento de la resonancia magnética era algo muy antiguo, que se había desarrollado en 1912 con descubrimientos de otros científicos. Hay, pues, una diferencia muy grande entre la ciencia básica y la ciencia aplicada. La ciencia, hoy en día, es así.

Volvamos al ejemplo del ajedrez, que sirve para ilustrar esta diferencia: en el ajedrez hay diez, y no más, reglas; pero ¿cómo puede ser tan atractivo y estimulante para quienes lo juegan, teniendo tan pocas reglas básicas? La razón es que, si uno calcula las posibilidades de juegos distintos que puede lograr con sólo esas diez reglas básicas, encontrar unas probabilidades, en lenguaje común, de 1 seguido de cien ceros o, científicamente hablando, sería 10 a la 100. Es decir, un número inmenso de probabilidades de juegos diferentes, lo que indicaría que no hay una forma de lograr jugar un ajedrez perfecto, pues siempre hay otras posibilidades de juegos distintos. La naturaleza se puede ver de manera similar: tiene 10 reglas básicas, pero son múltiples las posibilidades de inventar nuevas cosas a partir de ellas. En otras palabras, el número de invenciones que tiene la naturaleza es virtualmente infinito. La naturaleza puede generar más invenciones que los juegos que se pueden lograr con el ajedrez.

Mucha gente se pregunta ¿vale la pena hacer investigación? Yo no voy a dedicarme a responder esta pregunta, pues para mí es obvio que sí vale la pena. Si no fuera por la investigación, muchos de nosotros ni siquiera estaríamos vivos; la investigación es algo sumamente importante para la humanidad. Hay otra pregunta que voy a formular a partir de una lista de científicos que ganaron Premios Nobel [se refiere a una diapositiva que presentó durante la conferencia]: ¿fueron ellos absolutamente cruciales para la ciencia? La respuesta es... Absolutamente no. Que ellos hubieran vivido o no, no ha hecho diferencia alguna, porque, de todas formas, tarde o temprano se hubiese llegado a esos descubrimientos. Y eso es lo maravilloso de la ciencia: que si uno no lo hace, alguien más lo hará, porque la ciencia avanza gracias a un fenómeno cooperativo que se da en ella. Y como los científicos no somos indispensables, no somos famosos como las personas que trabajan en otras áreas. Pensemos, por ejemplo, en las artes: sin Picasso no habría habido Picassos; sin Mozart no habría habido la música de Mozart; si Miguel Ángel no hubiera vivido, no tendríamos sus esculturas. Porque estas son actividades muy distintas a las de la ciencia.

Ahora bien, a diferencia de la tecnología, la ciencia es libre y no está protegida por patentes. Las leyes científicas no pueden ser protegidas por patentes. La ciencia está disponible en todas partes, gracias a las revistas científicas y a la Internet. La Internet permite hoy que cualquier persona, por ejemplo de Colombia, tenga acceso a toda la información científica que se produce en cualquier parte del mundo, lo que es maravilloso en cuanto a la ciencia se refiere. Pero para entender la ciencia hay que participar
activamente en ella. Yo trabajé en el laboratorio de estudios científicos de la General Electric —ahora se le llama Centro Global de Investigación y Desarrollo—; entre el personal que trabajaba allí había cerca de 800 PhD. Cuando yo trabajé en el laboratorio, el presupuesto anual era de 200 millones de dólares, con 800 científicos de tiempo completo que publicaban 400 trabajos científicos al año, lo que significaría que el costo anual por científico era de 250.000 dólares y que el costo de cada trabajo sería 500.000 dólares. No es justo presentar esto así, porque los científicos activos hacen muchas más cosas; sería mejor decir que cada artículo podría tener un costo aproximado de 125.000 dólares.

La revista Nature publica, en promedio, 18 artículos al mes, a un costo de 125.000 dólares por artículo; es decir, aproximadamente hay 2 millones de dólares de investigación científica publicada en cada revista de Nature y lo más llamativo es que un ejemplar de esta revista cuesta apenas 8 dólares. ¡Por 8 dólares uno puede comprar 2 millones de investigación científica! Pero, para aprovechar toda esa información, es necesario tener una buena educación.

Quiero volver al tema de la ciencia. Hay una gran ciencia y hay una ciencia común y corriente; la mayoría de los científicos, incluyéndome, hacemos ese tipo de ciencia y es esta ciencia la que nos hace avanzar porque es la suma de pequeños pasos que están dando todos los científicos al mismo tiempo y en diferentes áreas. Todos estamos de acuerdo con que el universo se generó con la gran explosión (big bang) y, en este caso, las ciencias como la Astronomía, la Geología, la Biología o la Medicina dependen de la historia, pero la Física o la Química son ciencias que no dependen de la historia. Si volviera a ocurrir una gran explosión y de nuevo se generara el universo, la Física y la Química serían las mismas, pero la Biología no sería la misma.

Hoy en día existe lo que podría llamarse ciencia dudosa. Hablamos, por ejemplo, de los agujeros de los polos; yo no dudo que existan, pero siempre han estado sobre la Antártida. De hecho, su máximo nivel llegó en el año 1992 y no se ve que haya empeorado como se pensó que lo haría. El calentamiento global, pues, yo lo incluyo dentro de eso que he llamado la ciencia dudosa, dado que no sabemos qué tanto nos va a afectar o si nos va a afectar. Otro ejemplo es el de los campos electromagnéticos y el cáncer. Antes vivíamos en un ambiente en el que el único campo electromagnético era el sol; hoy, con las transmisiones satelitales, los teléfonos celulares, etc., estamos inundados de radiación magnética o radioeléctrica. En cuanto al cáncer, en la última centuria apenas ha habido un ligero aumento en su incidencia, porque el cáncer respiratorio ha crecido más —y esto se debe a que la gente fuma más—, mientras que los otros tipos de cáncer han disminuido o se han mantenido estables. Entonces, si la incidencia del cáncer se ha reducido —salvo, como dije, en el caso del cáncer de pulmón y otros de tipo respira-
torio—y la exposición de la gente a la radiación ha aumentado exponencialmente, no habría relación entre estas cifras.

También se puede hablar de la ciencia mística—y a los científicos, en general, nos disgusta mucho—. Por ejemplo, la percepción extra sensorial, según la cual yo podría mandarle un mensaje a mi hermano que está en Noruega sólo con pensar en él y él, podría recibirlo. Claro que yo no creo que esto funcione, pero la gente desearía que sí se pudiera hacer. Hoy, con la ciencia, esto es posible gracias, por ejemplo, a los celulares. Es muy difícil que la sociedad en general supere esas creencias, pero muchas veces la ciencia ha convertido ciertas aspiraciones comunes en realidad. Hace poco estuve en Suiza y tome un avión de una aerolínea de ese país. No sé si en Colombia ocurre como en Estados Unidos, donde existe la creencia de que el número 13 es de mala suerte. En Suiza todo funciona a la perfección, nada está fuera de lugar, todas las personas acatan a cabalidad todas las normas y son personas muy racionales y lógicas. Pues bien, cuando fui a ubicar mi silla en el avión suizo encontré que... ¡no existe la fila número 13!. Esto me dejó muy preocupado y enojado, pues ¡mi puesto era el número 14! Y si uno empieza a contar desde la fila 1...

Ocurrió un caso muy curioso hace unos años en Estados Unidos. Una mujer que decía tener percepción extra sensorial, es decir, decía ser súper, se sometió a un escáner para hacerse una radiografía especial; después del examen dijo haber perdido sus facultades súper y demandó a la General Electric por esa razón. El juez le concedió una indemnización de un millón de dólares. Mis amigos de la General Electric bromeaban con esto diciendo que si tenía facultades súper debió saber que podía perderlas al hacerse este examen y otros respondían que, a lo mejor, lo que supo es que le otorgarían un millón de dólares.

Tenemos una imagen de Jack Kilby [se refiere a una diapositiva], quien ganó el Nobel en el 2000. Él es inventor. Nunca ha escrito un documento científico sobre Física, pero recibió el premio Nobel de Física, y se lo merece por su invención del circuito integrado que todos utilizamos. Lo que quiero decir es que hoy en día quienes están recibiendo los premios Nobel de Física son los inventores. Otro ganador del Premio Nobel, llamado Kerry Mullis, quien inventó la reacción en cadena por polimerasa, que también es una invención pura. Él tiene una personalidad muy curiosa, pues ha sido el único Premio Nobel que ha admitido que consume drogas. Es un iconoclasta, pero uno no tiene que ser buena gente para ganarse un Premio Nobel —y, de hecho, él es buena gente—.

Para recibir un Premio Nobel se requiere una muy buena idea y, segundo, insistir en el desarrollo de esa idea de manera muy efectiva; no es necesario ser de un país como Estados Unidos. Yo soy noruego, y en Noruega la gente se pregunta cómo es posible que
un país tan pequeño pueda competir con Estados Unidos; ¡claro que se puede!. Basta con tener una buena idea, no se necesita tener toda una maquinaria para desarrollarla. Yo compartí el Nobel con Leo Esaki y Brian Josephson y la característica que compartíamos era que ninguno de los tres tenía un doctorado en ese momento, no teníamos un PhD cuando hicimos el trabajo con el que nos otorgaron el Premio Nobel, pero todos teníamos buenas ideas, éramos independientes y hacíamos ciencia de pequeña escala, por decirlo así.

Voy a darles otro ejemplo de lo que significa una buena idea y de lo que se puede hacer con ella: vestirse en las mañanas. Si uno sólo tiene un sombrero para ponerse, no hay problema; lo coge y se lo pone. Pero si tiene, además del sombrero, un par de guantes, tiene que tomar una decisión: se pone primero el sombrero, luego el guante derecho y finalmente el izquierdo, y así sucesivamente van aumentando las posibilidades de elegir. En la parte de Nueva York en la que yo vivo suele uno ponerse más de diez prendas, es decir, hay muchas posibilidades de variar el orden en el cual se viste. Y, sin embargo, uno se viste todas las mañanas sin pensararlo, cuando tenemos ¡casi tres millones de posibilidades! Si agregamos el desayuno, las posibilidades aumentan enormemente. Pero no pensamos en esto; quizás deberíamos pensar. Las ideas surgen en las personas que piensan.

Hay un libro que se publicó hace unos años en Estados Unidos, El fin de la ciencia, que los científicos no vieron con buenos ojos; sin embargo, yo creo que, en cierta medida, el autor tiene razón, porque, como les he dicho, la mayoría de las leyes científicas ya han sido descubierto y que lo que se necesita hoy en día son nuevos inventos. Hay un problema al respecto, al que yo llamo el problema del perro y el refrigerador. Es posible que haya cosas en el universo que aún no entendamos. El perro sabe que la comida está dentro de la nevera, pero el perro no sabe qué es una nevera, cómo funciona y por qué enfria, pues todo eso está más allá de la capacidad de comprensión del perro. Así, es posible que haya cosas del universo —como la materia oscura— que todavía no entendamos. En todo caso, el paradigma para este milenio es inventar y no descubrir nuevas leyes.

Para terminar, quisiera referirme a varias cosas más que hay que hacer cuando se quiere conseguir un Nobel. Primero, hay que ser muy curiosos, hay que preguntárselo todo. Hay que ser, también, competitivo. Mi esposa no lo cree, pero los científicos son muy competitivos, se esconden cosas, temen que les roben sus ideas, componen mucho. También hay que ser creativos. Hay que tener la capacidad de variar la forma como se lava las manos todos los días y ver qué pasa al cambiar. También hay que ser muy testarudo, porque uno hace algo distinto o nuevo y la primera reacción de la gente es decir que eso no sirve para nada; incluso, uno se puede equivocar, pero hay que ser testarudo.
También hay que tener confianza en sí mismo, hay que estar seguro de las ideas que uno tiene, porque son válidas. También hay que ser escépticos, yo soy sumamente escéptico y, aunque mis hijos dudan que esa sea una virtud, yo siempre cuestiono todo y pregunto si es cierto o si no lo es y a ellos no les agrada. También hay que ser paciente, pues las buenas ideas hay que trabajarlas infinitamente. Pero, por encima de todo, además, hay que tener suerte. ¡Y yo he sido una persona muy afortunada!

Muchísimas gracias.

* Preguntas

P. ¿Cuál sería la recomendación que usted haría a los científicos colombianos para obtener un Premio Nobel?

R. Primero les cuento que yo tengo que parecer un teórico, pero luego hice una serie de experimentos y reconozco que los experimentos son sumamente interesantes. No hay que sentarse a esperar que le lleguen a uno las ideas, ellas vienen cuando uno está en un laboratorio usando su cerebro y sus manos haciendo experimentos. Hay que ser activos, hay que hacer experimentos. En Noruega tenemos el mismo problema, pues los noruegos se sienten abrumados y se preguntan cómo podemos competir con una empresa como Bell Telephone de Estados Unidos o con la Universidad de Harvard o con las grandes multinacionales. Lo único que se requiere son las buenas ideas y éstas sólo le llegan a la gente cuando se mete a hacer cosas y no cuando están sentados por ahí aislados. Yo he sido muy solitario toda la vida; ahora tengo una empresa y es una situación distinta. Si le digo a un técnico que haga algo y él lo hace y se da cuenta de que no lleva a algo, uno duda. Pero si uno mismo va y hace lo que le ordenó hacer al técnico y encuentra que era una tontería, logró algo. Uno mismo tiene que involucrarse. Lo mejor que pueden hacer los científicos colombianos que están trabajando en el campo de la física es ir a un laboratorio y ponerse a trabajar, hacer experimentos, y es posible que así lleguen las ideas.

P. Nosotros creemos que los empresarios deben invertir en la ciencia para aprovechar el talento que existe. ¿Qué opina usted al respecto? Usted ha dicho que las leyes de la ciencia están descubiertas y que lo que hay que hacer es inventar; para inventar se requieren buenos laboratorios, y para que haya buenos laboratorios se requiere inversión de los industriales, que son quienes tienen el dinero.

R. Estoy absolutamente de acuerdo con usted, es indispensable la inversión privada en investigación. Yo tuve la oportunidad de trabajar becado en Cambridge, Ingla-
terra, era muy joven. Allí, los profesores almuerzan juntos. Una vez leí que existían las partículas fundamentales, que están dentro de un protón, acababan de ser descubiertas. Comenté el artículo con un profesor y él me dijo que, con seguridad no había sido en Australia donde se había desarrollado esta investigación. Me pareció sumamente arrogante su posición, pues él suponía que se requería mucho dinero para desarrollar ese tipo de investigación y que, por eso, no podría haberse hecho en Australia. En ese sentido, pues, tiene usted toda la razón: es mucho más fácil investigar e inventar en una comunidad científica que está respaldada con mucho dinero. Sin embargo, la cantidad de dinero no es crucial; lo clave es una buena idea, pero ayuda que haya dinero.

P. Estoy de acuerdo con que hay unas leyes básicas y con que son pocas hoy en día, pero es extremadamente complejo aplicarlas en muchas circunstancias. ¿No piensa usted que los teóricos todavía tienen mucho trabajo por hacer para desarrollar nuevas formas de aplicar estas leyes?

R. Las leyes de la naturaleza en la física son muy sencillas, pero en realidad son muy difíciles de aplicar. Por ejemplo, en cuanto a coloides, suspensiones, hidrodinámica y hasta en el caso de las proteínas. Claro que también hay lugar para los teóricos en el desarrollo de nuevas formas de aplicar estas leyes. A lo que yo me refería era a las leyes absolutamente fundamentales de la física, pero hay muchas más. Pero es cierto que se pueden desarrollar nuevas leyes, que no son las leyes fundamentales, pero que facilitan el manejo de los problemas que se abocan.
Conversatorio con Ivar Giaever
Presentación

Hoy se encuentra entre nosotros para compartir este espacio de interacción con estudiantes de diferentes colegios de Bogotá. El doctor Giaever hará una pequeña presentación y posteriormente habrá un espacio para preguntas que ustedes deseen hacer.

Interviene Ivar Giaever

Buenos días, cómo están. Yo nací en Noruega. Cuando llegué a este salón, puse en el computador este periódico, que es uno de los más importantes de Noruega; eso es lo
que nos ayuda a los físicos: me puedo sentar acá y leer lo que está pasando en Noruega en este mismo instante.

Lo más importante que dice este periódico es que en Noruega va a haber elecciones dentro de dos semanas y lo más importante de la elección es que uno de los candidatos va a cambiar las calificaciones y los requisitos para los estudiantes que entran al colegio. No habrá exámenes ni se tendrán en cuenta las notas para entrar a la universidad. Eso no era así cuando yo terminé el bachillerato. Cuando yo vivía en Noruega, éste era un país muy pobre. Y hoy Noruega ha llegado a ser un país muy rico, porque hemos encontrado petróleo en la parte norte del país.

Cuando yo estaba en el último año del bachillerato había una gran competencia para conseguir cupos en la universidad y había que tener unos puntajes muy altos para poder ingresar. Lo que yo quería hacer era llegar a ser ingeniero eléctrico, pero mis notas del colegio no eran muy buenas. Entonces, decidí ser ingeniero químico, pero mis notas tampoco eran lo suficientemente buenas para esa carrera; por eso me tocó conformarme con entrar a Ingeniería Mecánica.

En ese tiempo, las buenas notas del bachillerato eran muy importantes para entrar a las universidades de Noruega. Además, cuando me gradué de bachiller, también tuve que prestar servicio militar en Noruega durante un año. Luego de eso, me casé y tuve un hijo cuando me gradué en la universidad. Aunque no lo crean —esto fue en 1953—, pude obtener un trabajo muy fácil en Noruega, pero no pude conseguir una casa. En esa época, después de la Segunda Guerra Mundial, era muy difícil encontrar un sitio donde vivir. Entonces, decidimos emigrar a Estados Unidos y allí conseguí trabajo en la compañía General Electric; a pesar de las malas notas que traía de Noruega, pude conseguir trabajo en esta compañía y tomar algunos cursos de preparación dentro de la misma.

Trabajé muy duro y fui muy afortunado porque pude obtener una posición para trabajar en el departamento de investigación de General Electric. En esta empresa encontré un mentor que me colaboró mucho. Mi trabajo en ese departamento se concentró en tunelamiento eléctrico; para mí, en aquel momento, era algo muy misterioso que me parecía increíble. Les voy a contar qué es el tunelamiento, a ver si a ustedes les parece tan increíble como a mí. En física, si yo tomo este esfero y lo dejo caer sobre la mesa va a rebotar y si lo tiro nuevamente va a rebotar de nuevo. Sin embargo, después de muchas veces va a terminar abriendo un hueco y traspasando la mesa. En ese momento yo no creía que eso fuera posible. Cuando uno es físico aprende sobre mecánica cuántica, que es la mecánica de las cosas pequeñas.

Si uno toma las partículas más pequeñas que conocemos, los electrones, y hacemos el experimento de tomar dos metales en posiciones opuestas, los electrones estarán
a un lado y al otro; pero si acerco estos metales, los electrones irán de un metal al otro, sin cruzarse nunca en la intersección. Como ingeniero mecánico no podía entender que esto fuera así, pero seguí experimentando para convencerme. Así, ingresé a una universidad en Estados Unidos donde aprendí Física y mecánica cuántica, para entender el gran misterio de los hechos que acabo de explicar.

Hablé con algunos de mis colegas de la compañía General Electric y ellos no estaban muy seguros de que el experimento que les acabo de contar estuviera hecho de manera correcta. Busqué maneras para demostrar que si estaba bien elaborado y tomé una clase en la universidad sobre superconductividad eléctrica y en esa clase el profesor decía que los superconductores creaban un puente de energía. En ese momento no tenía ni idea de lo que estaba descubriendo y que luego me llevaría al Premio Nobel. Cuando enseño en las universidades siempre les digo a mis alumnos que es muy importante poner atención en clase, porque ustedes pueden aprender algo muy importante que puede cambiar radicalmente sus vidas. Si no hubiera puesto atención en clase, no estaría hoy, aquí, con ustedes.

Muchas gracias

* Preguntas

P: ¿Dónde vive actualmente?

R: Vivo en la parte norte del estado de Nueva York en una ciudad llamada Albany, que queda a tres horas de la ciudad de Nueva York.

P: ¿Cuáles son las diferencias entre conductores y superconductores?

R: Son muchas las diferencias. Si ustedes someten un anillo a muy bajas temperaturas, casi de congelamiento, esa pieza se va a convertir en un superconductor. Y si inducen corriente en ese anillo, la corriente quedará alrededor de ese anillo por siempre.

P: ¿Cómo sucede ese fenómeno?

R: Esto pasa en muchos metales, como el zinc y el aluminio, pero no en metales como el oro y la plata. Existe una teoría que explica el fenómeno.

P: ¿Qué hace un superconductor?

R: Cuando ustedes enfrián un metal, éste se convierte en superconductor y cuando llega a ese estado se convierte en un puente de energía y la razón es que los electrones tienen energía independiente. En el superconductor, como les demostré, los electrones permanecen juntos y así ellos pueden unir energía.
P. ¿Cuáles son realmente los usos que podemos tener en nuestras vidas con los superconductores?

R: Lo que yo hice con este experimento fue encontrar y medir pequeñas piezas metálicas, pero el uso más común que se le ha dado a esto es en resonancia magnética: son filigranas de energía que permiten mirar dentro de las personas. En resonancia magnética se necesita una mayor cantidad de energía y ella se obtiene con los superconductores, que crean corrientes continuas de energía y éstas crean el campo magnético.

P. ¿Cuáles son los mejores conductores?

R. Hay una aleación de dos metales que da resultado.

P. ¿En qué trabaja actualmente?

R. He trabajado en biología casi treinta años y ahora soy el presidente de una pequeña compañía que trabaja en biofísicas aplicadas.

P. Todavía no entiendo cómo un esfero puede abrir un hueco en la mesa para atravesarla. ¿Podría explicarlo?

R. Yo tampoco. La única vez que eso ha pasado es cuando juego tenis: la bola ha pasado a través de la red de la raqueta. Esto sólo pasa realmente en la mecánica cuántica con partículas muy pequeñas, como los electrones, pero con cosas más grandes es muy difícil que esto pase.

P. Hay muchas teorías acerca de los electrones, ¿cómo los define usted?

R. Sólo hay un problema que todavía no ha sido resuelto en Física y es lo que se denomina partículas fundamentales o elementales y los electrones, vistos así, se pueden definir mejor, porque los electrones son partículas elementales. Pero si se toma un átomo de hidrógeno se encuentra que tiene un protón en el centro y un electrón girando alrededor, y el protón no es una partícula elemental, pues el protón consiste de lo que llamamos quarks. Este es un tema complicado porque los quarks no son partículas muy estudiadas y entendidas todavía.

P. ¿Cómo puede una partícula pasar de un metal a otro sin quedar en la intersección?

R. Es una muy buena pregunta. Mucha gente no entiende eso, pero está la ecuación de Schrödinger que predice qué es lo que pasa con un electrón. Y esta ecuación siempre es correcta. Es relativamente más fácil mirar las cosas grandes, porque las podemos ver todos los días, pero en mecánica cuántica un electrón es al mismo tiempo onda y partícula. No se puede entender, sólo con el cerebro, cómo es que trabajan estas pequeñas partículas, porque uno no las ve en la vida cotidiana, tendría que ir a un laboratorio especial para verlas.
P. ¿Cuál es la cosa más chistosa que usted vio durante su trayectoria en los estudios de Física?

R. Lo más chistoso yo diría que es lo que se conoce como una fusión fría; fusión es lo que pasa en el sol, en donde varios átomos se unen y se calientan al fusionarse y eso es lo que estamos tratando de hacer nosotros en la tierra para obtener energía ilimitada, pero todavía no encontramos la forma de realizar eso. Hace unos años dos químicos dijieron que ellos podían lograrlo en un pequeño contenedor y crearon gran expectativa en todo el mundo porque, si eso fuera cierto, el descubrimiento habría cambiado la vida de todos nosotros. Desafortunadamente, eso fue totalmente falso.

P. ¿Los superconductores convencionales pueden estar a altas temperaturas?

R. Hay una razón para los superconductores que dependen de aleaciones de cobre; y eso es realmente un superconductor cerámico y no es realmente un metal y sorprendentemente pueden estar a 100° Kelvin, lo que equivale, más o menos, a 200° Fahrenheit. En el presente eso no tiene ningún uso práctico.

P. Usted hizo el experimento muchas veces. ¿Por qué sus colegas decían que era erróneo?

R. Yo hice el experimento muchas veces y estas personas decían que de pronto yo había hecho algo erróneo y no me creían totalmente. Esto es muy común en Ciencia: cuando uno realiza un experimento las personas no lo creen totalmente y hacen muchas preguntas acerca de los experimentos. Yo usé sólo un metal y el superconductor. Pude demostrar lo que estaba experimentando y nunca más hubo objeciones.

P. ¿Qué piensa que hubiera sido su vida si se hubiera quedado en Noruega?

Si me hubiera quedado en Noruega, mi vida hubiese sido muy diferente. ¡Hubiera podido llegar a ser el rey de Noruega! También hubiera podido no llegar a serlo. La principal diferencia es que en Noruega hay mucha burocracia y siendo un ingeniero mecánico nunca hubiera tenido la posibilidad de trabajar en Física ni de estudiar. Lo que me gusta de la sociedad americana es que todo es posible.

P. ¿Cuáles son las condiciones para ayudarle al cerebro, usando su teoría, para que éste haga la transmisión de información lo más acertada y rápida como se está haciendo con un computador?

R. Existe un instrumento médico que pone superconductores alrededor del cerebro, pero todavía es un instrumento de investigación. Por ejemplo, si usted toca un instrumento musical, con este aparato se puede saber qué área del cerebro está utilizando, pero no se puede saber qué está pensando usted.
P. ¿Qué consejo nos daría para amar la Física y lograr triunfos como los que usted ha alcanzado?

R. Primero que todo ustedes tienen que reconocer que para ser un Premio Nobel tienen que tener mucha suerte. El laboratorio en el que yo trabajé tenía 800 personas con doctorado y eran todos mucho más educados que yo, y la mitad de ellos probablemente era más inteligentes que yo, pero yo obtuve el Premio Nobel. Lo más importante es pensar acerca de cómo hacer cosas. Me gustaría darles un ejemplo de cómo nosotros pensamos muy poco acerca de las cosas. Todos ustedes se visten en las mañanas. Si uno sólo tiene un sombrero para ponerse, no hay problema; lo coje y se lo pone. Pero si tiene, además del sombrero, un par de guantes, tiene que tomar una decisión: se pone primero el sombrero, luego el guante derecho y finalmente el izquierdo, y así sucesivamente van aumentando las posibilidades de elegir.

En la parte de Nueva York en la que yo vivo suele uno ponerse más de diez prendas, es decir, hay muchas posibilidades de variar el orden con el cual se viste. Y, sin embargo, uno se viste todas las mañanas sin pensararlo, cuando tenemos ¡casi tres millones de posibilidades! Si agregamos el desayuno, las posibilidades aumentan enormemente. Pero no pensamos en esto; quizás deberíamos pensar. Las ideas surgen en las personas que piensan.

Cuando uno se lava las manos por primera vez, el padre o la madre dice “no, no, no se hace así, sino así”. De ahí en adelante ustedes siempre se lavan las manos de la misma manera, sin pensar en que podríamos tener otras posibilidades. Piensen en otras cosas que ustedes hagan todos los días y notarán que no piensan acerca de eso, pero cuando ven invenciones ustedes se preguntan por qué no pude yo inventarlo. Entonces, la mejor manera de obtener un Premio Nobel es tener una buena idea. Y no van a tener una buena idea si no piensan en lo que hacen cotidianamente, aunque sean las cosas más triviales. Pensar es un trabajo muy duro.

P. ¿Usted trabajó solo en la investigación que le mereció el Nobel o tuvo algún grupo de apoyo?

R. No, trabajé solo. Tenía un buen mentor que me ayudó a encontrar el problema de investigación que yo quería. Eso es bueno para mí porque yo soy así, pero no necesariamente es bueno para todos.

P. Aquí hay gente con talento. ¿Qué deben hacer estas personas para obtener un Premio Nobel o qué es lo que les falta para lograrlo?

R. Como ya dije, para obtener un Premio Nobel lo único que se requiere es tener una buena idea. Digamos que yo hubiera tenido esta idea en Noruega como ingeniero
mecánico, no habría podido trabajarla y experimentarla porque no tenía en donde hacerlo. En gran medida ayuda tener un laboratorio, que puede ser un apoyo para desarrollar la buena idea que se tiene. Yo trabajé en los laboratorios de la General Electric en ese tiempo y nunca había trabajado con superconductores, pero allí había muchos científicos trabajando con superconductores y compartieron información conmigo. No sé cómo será en Colombia, pero en Noruega es muy difícil conseguir esta clase de apoyo.

P. ¿Es la primera vez que viene a Colombia o ya había estado antes?

Es la primera vez que estoy en Colombia. Estuve en Brasil, en Río de Janeiro, hace cincuenta años y me pareció una ciudad maravillosa, pero Bogotá me ha gustado muchísimo más. Mañana voy a ir a una de las ciudades más importantes y famosas de Colombia, Cartagena.

P. Hace cincuenta años la tecnología no estaba tan desarrollada como ahora, ¿cómo logró las temperaturas tan bajas que se requieren para su experimento?

R. Si ustedes ponen a hervir agua en un horno a 1.000°, en su punto de ebullición el agua va a llegar al 100°, aunque el horno esté a 1.000°. La temperatura del sitio en el que nosotros trabajábamos es de 300° Kelvin y si pongo una vasija metálica con helio en ese mismo cuarto, el helio va a empezar a hervir y en su punto de ebullición la temperatura será de 4°. Esa es la forma estándar de bajar temperaturas dentro de un laboratorio.

P. ¿Usted estaba apuntando hacia el Premio Nobel o fue simplemente algo con lo que se encontró en el camino?

No. Hay muchos científicos que trabajan esperando obtener el Nobel, pero yo nunca tuve eso en mente. Es muy bueno obtener un Premio Nobel, es divertido, pero no era algo que yo estuviera buscando específicamente.

P. Después de que termine su viaje en Colombia, ¿hacia qué otro país se dirige?

R. Volveré a Estados Unidos.

P. ¿Cuál fue la hipótesis que usted se planteó cuando empezó su investigación?

R. El objetivo de mi investigación era probar que la persona que había mostrado un experimento sobre tunelamiento estaba en un error. Ese era mi reto.

P. ¿Cuáles fueron las mayores dificultades que se le presentaron a lo largo de su carrera y de su vida?

R. El punto más difícil de mi vida fue cuando no pude conseguir una casa en Noruega, de ahí en adelante tuve una vida muy buena. En Física si he tenido muchas dificultades porque la investigación muchas veces es difícil y se pueden tener largos
periodos en los que realmente no pasa nada. Por eso hay que tener siempre la mente abierta para preguntar a otras personas sobre cuáles podrían ser otras formas de redireccionar la investigación.

P. He notado que todo su trabajo ha sido netamente experimental, ¿cómo se ayudó para tener un soporte teórico de lo que está trabajando?

R. Cuando llegué a la General Electric trabajé durante dos años con matemáticos famosos y muy importantes y siempre pensé que debía llegar a ser teórico, pero cuando empecé a trabajar en el laboratorio en investigación reconocí que eso no era suficiente y que necesitaba realizar experimentos. Yo adoro los experimentos. Cuando uno hace experimentos siempre está en lo cierto, pues es lo que pasa en los experimentos; sólo hay que poner atención y hacer todos los pasos del experimento correctamente. En cambio, cuando se hacen teorías siempre está la posibilidad de cometer errores. Yo hago mucha teoría, pero lo que me gusta realmente es experimentar.

P. ¿Por qué no estudió otra carrera?

R. Como ya expliqué, esa fue la única carrera que me dejaron estudiar en Noruega. Al llegar a Estados Unidos tuve la oportunidad de estudiar y de hacerlo a mi manera. Los jóvenes siempre están pensando en qué van a hacer cuando sean adultos, pero eso no es tan importante, lo importante es hacer las cosas bien y así siempre se tendrá éxito. Ustedes pueden cambiar de carrera varias veces a lo largo de sus vidas, pero lo que hagan deben hacerlo muy bien. Mirenme a mí: soy más viejo que el computador y no aprendí nada acerca de computadores en la universidad y ahora estoy dedicado a estudiar computadores. El consejo que les doy es que, desde ya, cuando son jóvenes, estudien ciencias básicas y cuando lleguen a ser mayores, por ejemplo, con cincuenta años, todavía pueden estar dispuestos a estudiar ciencias sociales. Muchos científicos hacen eso. En cambio, no es muy común ver a un historiador intentando estudiar Física a los cincuenta años.

P. ¿Se siente con la capacidad de seguir experimentando, a pesar del Nobel?

R. El Premio Nobel ha arruinado a muchas personas. Muchas personas que han recibido el Premio Nobel creen que ya son las personas más importantes del mundo y puede ser difícil mantenerse trabajando. A mi no me ocurrió eso porque, después del Nobel, continué trabajando y empecé a interesarme en la biología, en donde he tenido éxito.

P. De acuerdo con las investigaciones que están haciendo en el mundo, ¿cuál cree que va a ser la siguiente teoría que nos afecte en la vida?

R. Los estudios más importantes que las personas están esperando ahora es lo
relacionado con las células madres, que son células de los embriones. Si yo necesitara un nuevo corazón, podría tomar una de estas células madres y crear un bebé para tener un corazón nuevo. Sin embargo, nadie hace esto porque es éticamente terrible. Lo que se podría hacer sería no crear un bebé, sino crear un corazón y eso se puede hacer ya.

P. ¿Cuál es su música favorita?

R. La de Eduard Grieg, un compositor de música clásica, porque ésa es la música típica de Noruega. También me gustan los Beatles, pero no el rock pesado.

P. Hay una gran diferencia entre Física y Biología. ¿Cómo se le ocurrió la idea de aplicar la Física a la Biología?

R. Yo no veo mucha diferencia y no es que haya aplicado la Física a la Biología. Yo me enfoqué en las Ciencias en general. Dividir las ciencias en categorías es una invención del ser humano. Hoy, especialmente en la industria, es muy importante la investigación interdisciplinaria.

P. ¿Qué opina sobre la clonación?

R. Mi opinión es que la clonación es muy importante para la investigación, pues podemos aprender con estas investigaciones cómo se comporta un organismo. Por ejemplo, hay algo llamado 'el golpe del ratón': se pueden seleccionar los genes de los ratones y quitar los que no se necesitan, y en ese momento se puede mirar cómo se comportan esos genes y qué es lo que hacen.

P. ¿En algún momento de su vida ha habido un impedimento ético que lo contuviera de realizar una investigación?

R. Yo soy un científico y lo que hacemos los científicos es tratar de encontrar la verdad. Por otro lado, la ciencia se puede usar para cosas indebidas, como ocurrió con la bomba nuclear. Se puede crear una estación nuclear polar y usar la energía de la misma para el bien común. Es decir, en mi opinión, la ciencia se puede usar para crear una bomba o para generar energía más barata. La Física en sí misma no tiene ningún problema ético.
Conferencia plenaria

Una aplicación al conflicto armado de sistemas dinámicos no lineales

José Fernando Isaza

Muchas gracias por la invitación a este Simposio. También les agradezco que hubieran aceptado el cambio en el tema de la conferencia, pues inicialmente se iba a hablar sobre agujeros negros y radiación de Hawkin, pero me dijeron que el interés se centraba más en el impacto de la Física en la sociedad. La verdad es que la recuperación de información en la radiación de Hawkin es un problema eminentemente de mecánica estadística.

Este trabajo lo hice con Diógenes Campos, quien fuera mi profesor de mecánica cuántica en la Universidad Nacional. Vamos a mirar primero los modelos y el reemplazo de combatientes. Un modelo de guerra sin reemplazo de combatientes sería el ideal, pero el mundo no es así. Tenemos, pues, un modelo de ejército o guerrilla con reemplazo de combatientes. Esta es una parte realmente original, pues los modelos de combate generalmente trabajan con dos fuerzas en conflicto. En Colombia hay tres fuerzas en conflicto.

Nos planteamos la pregunta de cómo evolucionan las fuerzas en conflicto teniendo en cuenta el reclutamiento. Trabajamos también con un modelo de difusión de comportamientos fanáticos, porque, a pesar de que se quiera negar una evidencia, el terrorismo tiene una base de comportamientos fanáticos y tiene una base objetiva. Eso no justifica el terrorismo, pero no puede negarse que hay una base objetiva que crea comportamientos fanáticos con tendencias hacia el terrorismo.
Los modelos generales de ejército-guerrilla plantean que X representa el número de efectivos del ejército, Y puede representar el número de efectivos de la guerrilla y varían en función del número de combatientes de cada uno de los grupos en conflicto. Aparece un término que, en el caso colombiano, es el factor explicativo de por qué el conflicto persiste: la tasa de reclutamiento de armados ilegales.

Colombia es un caso particular porque hay tres fuerzas en conflicto —ejército, guerrilla y paramilitares— y las tres fuerzas actúan entre ellas con distinta intensidad. Cualquiera que haya trabajado en sistemas dinámicos sabe que, cuando hay tres grados de libertad, generalmente las soluciones son caóticas. En esto no encontramos attractores extraños porque trabajamos con horizontes relativamente pequeños, quince años más o menos. Si uno trabaja con horizontes más largos, encuentra attractores extraños.

Los modelos matemáticos de la guerra tienen un origen literario; tal vez el más conocido es el de La guerra y la paz, de León Tolstoi: «diez hombres, batallones o divisiones que luchen contra quince hombres, batallones o divisiones los vencen a todos, es decir, los capturan o matan, perdiendo sólo cuatro de ellos. De tal modo que, en un lado, las pérdidas son cuatro y en el otro, quince». Por consiguiente, estos cuatro equivalentes a los quince: con lo que $4(X) = 15(Y)...$ Tolstoi no era un matemático sino un maravilloso novelista ruso; lo interesante es que trabaja un esbozo matemático. «Esta ecuación no nos da a conocer el valor de los factores desconocidos, pero nos da la proporción entre las dos incógnitas. Entonces, sustituyendo estas ecuaciones, con ciertos datos históricos seleccionados de formas diversas —batallas, campañas, períodos de guerra— se obtiene una serie de números en la que deberían existir ciertas leyes y estas leyes se podrian descubrir» (León Tolstoi, La guerra y la paz).

Tal vez el precursor, después de León Tolstoi, es Lánchester. Él trabajaba en la Inglaterra de la primera posguerra y dice, lo primero, que «más vale manía que fuerza». Dice: «miremos dos fuerzas regulares. ¿Qué será mejor si no hay reemplazo de combatientes para que un ejército derrote al otro? No piensen que es aumentar el número de efectivos lo que conduce a la victoria, es mucho más eficiente la efectividad en el combate». Porque el cuadrado del número de combatientes varía en proporción directa a la efectividad. Es mucho mejor duplicar la efectividad que aumentar el número de combatientes porque, para tener el mismo efecto, habría que multiplicar por cuatro el número de combatientes.

El número de combatientes del ejército X disminuye en proporción del número de combatientes del ejército Y y (a) la efectividad de Y (estos son dos ejércitos regulares) y (b) la efectividad de (a). Esto es interesante, y a veces los ejércitos no lo tienen en cuenta. Lánchester, y, en general, el almirantazgo inglés se fijaba en eso. Es una ecua-
ción bastante sencilla, por ser una ecuación lineal: ambos ejércitos se aniquilan, no hay reemplazo de combatientes y aparece la raíz cuadrada de la efectividad.

Es mucho mejor trabajar sobre la efectividad que sobre el número de combatientes. En la primera ecuación, el ejército X aniquila al ejército Y, porque lo deja sin combatientes. Si se cumple la condición ideal de $y = b/a x = 0$, los dos ejércitos se aniquilan mutuamente. Y en la tercera fórmula, el ejército Y derrotaría al ejército X si no hay reemplazo de combatientes.

La guerra asimétrica si se parece mucho a la guerra que existía en Colombia, ejército-guerrilla, antes de que entraran los paramilitares. Uno de los modelos dice algo que es muy elemental: el número de combatientes varía en proporción a la efectividad de la guerrilla Y, proporcional al número de efectivos de la guerrilla, pero también proporcional al número de efectivos del ejército. Entonces, en un combate entre un ejército regular y uno irregular, simplemente aumentando las fuerzas del ejército regular, puede tenerse el efecto paradójico de que aumentan las bajas del ejército regular.

El ejército irregular puede trabajar, un poco, sin guerra de posiciones y puede trabajar en emboscadas. El ejemplo histórico es el de las Termópilas: unos pocos del ejército irregular (en este caso los griegos, que son los que hacen la emboscada). En una emboscada, actuando como ejército irregular, unos pocos griegos derrotan al ejército persa. Lo que dicen estos modelos es que en una guerra irregular no basta con aumentar el número de combatientes, porque esto conduce a aumentar el costo, crear problemas logísticos y aumentar el número de bajas.

Las posiciones iniciales permitirían predecir, si se mantienen las efectividades, que el ejército X derrota al ejército Y si $c/b > 0$. Realmente, las ecuaciones no son lo importante, lo importante son las conclusiones. Los gnomos de las matemáticas saben que no hay cosa más complicada que encontrar una solución analítica a un sistema de ecuaciones no lineales.

En el siguiente modelo puede tratarse de dos ejércitos regulares o dos ejércitos irregulares. Cada uno puede afectar al otro en proporción no sólo al número de efectivos de uno, sino al número de efectivos del otro. Al mirar las ecuaciones se encuentra que se parecen mucho a las ecuaciones de propagación de epidemias: si $c > 0$, Y derrota a X; si $c < 0$, X derrota a Y; y si $c = 0$, es decir, si se cumple la condición de que el número de combatientes iniciales está relacionado con la efectividad, ambos ejércitos se aniquilan.

El modelo colombiano es un modelo con reemplazo de combatientes, tanto del ejército regular como de los ejércitos irregulares. Lo más complejo es el alto reemplazo de combatientes de los ejércitos irregulares. Para el reemplazo, el ejército regular tiene,
por ejemplo, el servicio militar obligatorio —lo que le da una altísima tasa de reemplazo— y también tiene los soldados profesionales. En la guerrilla, el reclutamiento se hace fundamentalmente en zonas deprimidas y hay una alta tasa de reemplazo. Hay varios estudios sobre esto (el Centro Internacional de Migraciones, el PNUD, Patricia Lara, etc.) y en ellos se encuentran cosas interesantes:

* El ingreso, fundamentalmente, es de jóvenes a grupos armados.
* El ingreso, generalmente, está entre los 11 y los 17 años.
* En combate irregular, a menos que tengan una gran propensión a ser comandantes, a los 25 años se consideran ‘viejos’ y si el gobierno los puede reclutar como desmovilizados, tanto mejor, pues así la guerrilla o los paramilitares no tienen que asumir el costo.
* El 83% entra en forma voluntaria a la guerrilla y al paramilitarismo. No son forzados. Es reclutamiento voluntario porque son jóvenes que necesitan reconocimiento, que están buscando salir de una situación sin futuro, que han sido maltratados. El arma les da el reconocimiento que ellos creen que no les va a dar la sociedad.
* El 78% de estos muchachos manifestó haber visto cadáveres; el 8% admitió haber matado; el 70%, haber visto matar, y el 18%, haber visto torturar.

Vamos a construir un modelo guerrilla-ejército.

La guerrilla, por razones logísticas, trata de crecer, pero sin superar un cierto umbral de combatientes que llamamos N, que se estima en 25.000. Esta cifra se le atribuye a Fidel Castro, quien dice que una guerrilla de más de 25.000 efectivos ya no es guerrilla sino ejército regular y que entra en guerra de posiciones y, por tanto, su pérdida de efectivos es proporcional a la masa de soldados.

El ejército evoluciona negativamente en proporción a la efectividad de la guerrilla y al número de combatientes de guerrilla y ejército, pero crece a una tasa muy alta. El ejército tiene que tener un número de combatientes más o menos diez veces mayor al número de combatientes irregulares. Las funciones de reemplazo de combatientes están dadas por expresiones logísticas; si los efectivos del ejército X son menores que ay, el reemplazo sube en proporción a esa diferencia. De igual forma, si la guerrilla está lejos del número de efectivos de ‘saturación’ N, el reemplazo crece proporcional a la diferencia. Veamos el número de guerrilleros capturados, con base en información de la Contraloría General de la República:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1233</td>
<td>1786</td>
<td>1333</td>
<td>1217</td>
<td>1236</td>
<td>1556</td>
<td>1766</td>
</tr>
</tbody>
</table>
El promedio anual entre el año 1995 y el 2001 fue de 1.477. El promedio anual de agosto del 2002 a febrero del 2004 fue de 6.450, lo que significa que la efectividad se disparó (no hay que sorprenderse con la cifra, pues la verdad es que la mayoría de las ‘capturas’ son detenciones irregulares). Si estos fueran guerrilleros capturados, hubiese sido necesario triplicar las cárcel. En un estudio, la Contraloría dice que: ‘si la efectividad del ejército, y del gobierno, en capturar guerrilleros se multiplica por dos, hay que duplicar la inversión carcelaria’. Según las cifras oficiales, se multiplicó por cuatro, y esa inversión no se vio, de manera que en esa cifra hay mucho de lo que se denomina —aunque moleste un poco— ‘pesca milagrosas’ por parte de la Fiscalía.

Veamos las cifras del Ministerio de Defensa. En el período agosto del 2002 a diciembre del 2004: guerrilleros abatidos, 4.600; capturados, 15.000, para un total de casi 20.000. Éste era el número de guerrilleros que existían cuando se inició la actual administración, o sea que la guerra tuvo la capacidad de recomponerse totalmente. En autodefensas: abatidos, pocos; capturados... Estas son cifras oficiales del Ministerio de Defensa, o sea que cualquier observación no me la hagan a mi. Pero hay otras cifras aún más impresionantes. Narcotraficantes abatidos, 9; capturados, 128.000 (la cifra, pues, no es nada creíble). O sea que, según el Ministerio, ¡se han capturado 152.000 personas en esos tres grupos! En aras de la efectividad, se están dando como ciertas cifras que no corresponden a la realidad.

En el período marzo del 2002 y diciembre del 2004 se registran 231.000. Es una cifra que no tiene ningún sentido. Se está estigmatizando a la población y esto es delicado. No hay cárceles en Colombia para tanto narcotraficante, guerrillero o paramilitar, ni son tantos los traficantes, guerrilleros o paramilitares en Colombia.

Veamos ahora las cifras sobre cultivos de coca. En el año 2000 había, aproximadamente, 100.000 hectáreas en cultivos de coca, según el PNUD. Las hectáreas asperjadas en el período marzo del 2000 a diciembre del 2004 son 541.934; las hectáreas remanentes al iniciar el año 2005 son 105.000, según el gobierno de Estados Unidos (porque según el Gobierno Nacional la cifra es de 89.000 hectáreas). Si tomamos la cifra del gobierno colombiano tendríamos que, para erradicar una hectárea de coca, tendrían que fumigar 22 hectáreas. Con esos datos se ajustan los parámetros del modelo para la descripción del conflicto colombiano.

Los resultados son complejos cuando se trabaja buscando si el punto de equilibrio es estable o inestable. Si no hay guerrilla ni paramilitares, desafortunadamente es inestable porque si llega a haber unos pocos guerrilleros, el ejército multiplica por 10 sus efectivos y empieza la carrera armamentista.
Con los valores de los parámetros asignados, los puntos de equilibrio son:

\[(x, y)0 = (0, 0), (x, y)1 = (0, 1), (x, y)2 = (5.79, 0.77).\]

El punto \((x, y)\) es equivalente a un ejército de 144.750 soldados y a 19.250 guerrilleros y este punto de equilibrio es estable y, lastimosamente, coincide con la realidad colombiana. Lo que hay que buscar es modificar los parámetros, fundamentalmente el parámetro de reemplazo de la guerrilla.

En un modelo ejército – guerrilla – paramilitares, veamos las hipótesis:

* El ejército combate a la guerrilla y, en menor escala, a los paramilitares. Esta menor intensidad de ataque a los paramilitares se explica porque éstos no atacan al ejército.
* La guerrilla combate a los paramilitares y al ejército.
* Los paramilitares combaten a la guerrilla y no atacan al ejército.

Intuitivamente, podría pensarse que la desmovilización de los paramilitares debería permitir la reducción del número de efectivos del ejército, pues hay un enemigo menos para combatir. Sin embargo, declaraciones del comandante del ejército de hace 3 años hacen explícita la política de que en algunas zonas, de manera deliberada o no, la contención de la guerrilla ha sido dejada en manos de los paramilitares. Las palabras del alto oficial fueron las siguientes: «si se desmovilizan 10.000 paramilitares, el ejército requiere ampliar su pie de fuerza al menos en 20.000 hombres, pues se requieren dos soldados para controlar la guerrilla con la misma efectividad que lo hace un paramilitar» (esta declaración queda en la ecuación como beta=2).

Bajo las suposiciones anteriores, y llamando \(x\), \(y\) y \(z\) los efectivos del ejército X, la guerrilla Y y los paramilitares Z, respectivamente, se propone un modelo dinámico que describe el conflicto entre tres actores armados. Quienes miren estas ecuaciones recordarán la simbiosis, recordarán el modelo de crecimiento de especies por simbiosis. Es decir, el ejército considera su propio combustible, más los paramilitares, y mantiene el alfa Y. Tanto la guerrilla como los paramilitares actúan como fuerzas irregulares; aquí sólo hay una fuerza regular y, por eso, el efecto de combate es proporcional al número de combatientes. Aquí no aparece el factor de los paramilitares combatiendo al ejército, porque los paramilitares no combaten al ejército. La tasa de reemplazo de los paramilitares también se deriva de las declaraciones de los paramilitares, quienes sostienen que tienen que tener un número de combatientes igual al de la guerrilla y, por esa razón, van variando la saturación N de guerrilleros.
Quiero llamar la atención sobre un punto. La gran efectividad en capturas, desmovilizaciones y abatimientos de la guerrilla comparada con el número de efectivos de la guerrilla inicial y final, muestra que la tasa de reemplazo de la guerrilla en este periodo es altísima. La tasa de reemplazo de los paramilitares también es alta. La tasa de reemplazo del ejército es menor, pues tiene una base de efectivos más grande. También resulta un dato preocupante; al ajustar el modelo a una tasa de reemplazo menor por problemas sociales, aparece un menor número menor de militares, pero un número de paramilitares muy similar al de la guerrilla. El punto de equilibrio estable se lograría con menor gasto militar, si se baja la tasa de reemplazo de la guerrilla. Todo esto lo que demuestra es que hay que actuar sobre la variable fundamental, que es la tasa de reemplazo de la guerrilla.

La hipótesis de que hay 10 militares por cada guerrillero no se cumple porque, si hay tantos guerrilleros abatidos, capturados y desmovilizados, tendría que bajar el tamaño del ejército, y lo que ocurre es que ha crecido. Con esa tasa de reemplazo, que se deduce del modelo, resulta que lo que tenemos en Colombia es una guerrilla muy estable, un ejército también estabilizado —pero con un número mayor de combatientes— y los paramilitares se van acercando al número de combatientes de la guerrilla, pues también tienen una tasa de reemplazo alta. Si se bajara la tasa de reemplazo, el ejército podría bajar el número de sus efectivos; la guerrilla y los paramilitares llegarían a un equilibrio mucho menor.

La variable más sensible es la tasa de recuperación de los irregulares. Hay que actuar sobre la tasa r2, que es más humano y menos costoso que tratar solo, mediante el combate, de reducir el número de los integrantes de los grupos ilegales. Estos modelos explican la tentación anti democrática y desestabilizadora de una parte de la sociedad colombiana de hacer uso de grupos ilegales, en virtud de su mayor eficacia como apoyo a la lucha antiguerrillera.

Un ejército X debe gastar, en proporción al miedo que tenga del stock de armas del ejército Y, pero, si tiene mucho stock, debe invertir menos. Lo mismo hace el ejército Y: si tiene mucho stock, invierte menos; pero si el ejército X empieza a invertir mucho, el ejército Y lo hace también, y hay un gasto inercial. Si por alguna razón uno de los ejércitos piensa que debe gastar en proporción al stock y gasta más, el modelo revienta y el gasto revienta y revienta la sociedad. Además, si uno demuestra que la racionalidad del gasto es mayor que el temor, puede haber equilibrio en el gasto; pero si es menor —si una de las partes no tiene racionalidad en el gasto— revienta económicamente.

La guerrilla está orientada a racionalizar el gasto porque ha acabado con las principales fuentes de financiación, porque, aunque la extorsión y el secuestro siguen siendo
importantes para la guerrilla, ya no les generan tantos recursos como antes. Sin embargo, el gobierno está aumentando el gasto, porque tiene la teoría de que un mayor gasto le da más efectividad. Al crecer más el gasto militar que el de la guerrilla pueden generarse colapsos fiscales y económicos. Este año, la revaluación ocultó buena parte del déficit fiscal. Desde el punto de vista de la racionalidad económica de la guerrilla, para ellos es eficiente atacar la infraestructura eléctrica, petrolera, minera y de carbón, porque es lo que le genera el flujo de fondos a la economía nacional y, así, disminuye la capacidad de gasto de la contraparte.

El gobierno aplica una política que es sensata: atacar la fuente de financiación del narcotráfico, pero la ataca en la forma más ineficiente posible, la fumigación, y no con otros mecanismos, como la interdicción aérea, por ejemplo. El punto más delicado de una interdicción aérea son los pilotos y no las avionetas, porque los pilotos son el bien más escaso del narcotráfico. Eso explica por qué las hectáreas cultivadas no han disminuido y por qué el precio sigue bajando: porque el abastecimiento sigue igual.

Si uno considera que apenas una cuarta parte del gasto del ejército se dedica a la lucha antiguerrillera, y el otro 75% a otras actividades, encuentra que para desmovilizar, capturar o abatir a un armado ilegal se gastan 450 millones de pesos. Esta es una cifra que obliga a pensar si es una buena inversión la que se está haciendo. En cambio, a la guerrilla el reclutamiento le cuesta apenas 5 millones, que es el costo de entrenamiento de un nuevo reclutado. El grueso del reclutamiento lo hace la guerrilla en 63 municipios y los principales reclutados son prácticamente niños. Esto significa que el gobierno podría actuar para reducir el reclutamiento.

Aquí hay un problema sobre el que quiero llamar la atención. Todos los estudios sobre reclutamiento muestran que una de las principales motivaciones es la necesidad de reconocimiento del muchacho. Más efectivo que eliminar un guerrillero es evitar que ingrese al grupo ilegal, ofreciéndole trabajos de distintos órdenes. Enfocarse en las zonas deprimidas, que son la fuente del reclutamiento, para ofrecerles a estos jóvenes un reconocimiento social —un ingreso por labores cívicas, por ejemplo, y educación— que no se centre en las armas.

Actualmente estamos trabajando el modelo de difusión de comportamientos fanáticos. Es mucho mejor entender el terrorismo que negarlo; el terrorismo existe. Hay que censurar el terrorismo, incluyendo el terrorismo de Estado, pero no puede desconocerse tampoco que hay unas fuentes que alimentan el terrorismo. El teólogo Hans Küng en el libro El judaísmo, de 1991, dice lo siguiente: «cualquier religión que trate de impedir, en su propio beneficio, los ritos de las otras dos religiones habrá amistas creará un conflicto de incalculables consecuencias». Un año antes del atentado terrorista contra las ‘torres gemelas’, el primer ministro Ariel Sharon se unió a un grupo que
planteaba destruir una de las mezquitas para construir el tercer templo. El área de las mezquitas de Jerusalén es igual al área donde estaban las 'torres gemelas'. Eso no justifica el terrorismo, pero no puede desconocerse que hay comportamientos fanáticos que alientan el terrorismo.

El modelo parte de considerar una población susceptible y una población altamente politizada, pero con tendencia al terrorismo. En un artículo publicado en The Guardian se estableció que los suicidas terroristas que hacen atentados en Oriente Medio son jóvenes de clase media alta, contrario a lo que se pensaba, y que actúan después de estar en grupos altamente politizados.

Hay que buscar disminuir el tiempo de permanencia de los grupos terroristas, con inteligencia u ofreciendo alternativas o reduciendo las causas que llevan al terrorismo. Para disminuir la posibilidad de contacto exitoso entre la población susceptible y la población politizada terrorista hay que trabajar el tema del reconocimiento social a la población susceptible. Todo lo que demuestren estos modelos es que hay alternativas más eficientes para combatir la guerra que las que se están usando actualmente.

Muchas gracias

Preguntas

P. Usted ha presentado estos resultados en foros no académicos sino políticos. ¿Qué impacto ha tenido la presentación?

R. El modelo de gasto lo presenté hace unos años a la cúpula militar para hacerles entender la importancia de la racionalización del gasto en las decisiones de inversión. El mensaje fue que el gasto debe hacerse no por temor al contrincante sino valorando la situación del stock.

P. No entiendo la consecuencia lógica del modelo de que los paramilitares no atacan al ejército, pero éste si los ataca a menor escala. ¿Qué pasa cuando el ejército ataca a los paramilitares? ¿Ellos simplemente se dejan?

R. El modelo supone que los paramilitares no atacan al ejército porque, al mirar las estadísticas se encuentra que no hay bajas en el ejército por ataques de paramilitares. Sí aparecen bajas de paramilitares por el ejército. El modelo recoge una declaración explícita, pero también las estadísticas muestran eso.
Conferencia plenaria

Física y sociedad
Rafael María Gutiérrez Salamanca

Soy físico, y mi trabajo siempre ha sido la investigación. Hasta hace un año, cuando empecé a trabajar en Colciencias, donde he aprendido que muchas veces, la perspectiva desde la cual se observan las cosas genera diferencias sustanciales. Es decir, son relativas al observador. Cuando hablo ante auditórios similares a éste de temas de mi investigación, utilizo fórmulas, gráficas y otros recursos formales propios de la metodología científica, pero hoy, para ser consecuente con el Simposio Física y Sociedad, Año Mundial de la Física, 2005, y considerando la variada audiencia que amablemente nos acompaña, voy a prescindir de estas herramientas formales y trataré de leerles y comentarles algo así como un discurso que he preparado con algunas reflexiones, que espero que contribuyan al objeto que nos ocupa, esto es, resaltar la importancia del desarrollo de la Física en el desarrollo económico y cultural de la sociedad.

De todas maneras aprovecharé esta oportunidad para presentarles algunas imágenes, que nuestra asistente de apoyo al Simposio, Marcela Figueroa, diseñó haciendo un esfuerzo de diálogo desde diferentes perspectivas. Estoy seguro de que estas imágenes tienen, por lo menos, un poder sugestivo para ilustrar el discurso; estas imágenes van acompañadas por algunas interesantes frases de Albert Einstein, para contribuir también a la celebración de los cien años de su año maravilloso, cuando realizó esa contribución tan importante al conocimiento y a la cultura humana.
Cuando en Colciencias se decidió organizar este Simposio como parte de sus esfuerzos para celebrar el Año Mundial de la Física, como el centenario del año maravilloso de Einstein, pensamos que, adicionalmente a los eventos tradicionales organizados y desarrollados por la comunidad académica que Colciencias apoya, y consistentemente con la forma como ha venido progresando la Física, debíamos ser creativos y organizar un evento que pudiera superar la poca participación y visibilidad que estas actividades le proporcionan a los demás sectores que constituyen la sociedad. Pensamos, entonces, en un simposio que fuera capaz de atraer a personas de todos los sectores sociales y, también, que contribuyera de forma importante a superar muchos tabúes tradicionales en la percepción de la física.

El esfuerzo iba dirigido a mostrarles, más explicitamente, la contribución que ha tenido la Física, y que continúa teniendo con creciente relevancia, en el desarrollo económico, social y cultural. Surgieron, entonces, las dudas y las preguntas. ¿Cuál es la relación del gobernante, del político, con la Física? ¿Cuál puede ser el interés del comerciante en la Física? ¿Qué tiene que ver un periodista con la Física? ¿Qué tiene que ver la Física con la vida cotidiana? Claro, estas preguntas nos las formulaban los empleados públicos, los políticos, los comerciantes, los periodistas y muchas otras personas a quienes invitamos a participar y a apoyar este Simposio. Pero las mismas preguntas también las formularon académicos y físicos, incluyendo colegas que están en cargos administrativos contribuyendo, generosamente y con grandes esfuerzos, al fortalecimiento y al desarrollo del país en el conocimiento, apoyando, gestionando y haciendo valorar el conocimiento como uno de los patrimonios sociales indispensables para afrontar los retos del progreso. Nosotros mismos nos hicimos estas preguntas muchas veces.

A pesar de la convicción y la claridad que teníamos sobre la importancia de desarrollar este Simposio, dentro de las ideas y perspectivas mencionadas, estas preguntas y otras actitudes nos generaron ciertas dudas sobre las posibilidades y la utilidad del esfuerzo. Como en todo proceso de construcción de conocimiento objetivo, las incertidumbres y dudas no dejaron de ser útiles; nos empujaron a realizar aún mayores esfuerzos intelectuales y creativos para hacer entender mejor, y más claramente, las ideas y los propósitos, y, haciendo entender, entendimos más y nos superamos nosotros mismos. Nuestros esfuerzos fueron dando frutos, pero había mucho por resolver, y todavía nos queda.

No creo que debamos sentir vergüenza ni considerar irrespetuoso el aceptar ciertas realidades como una pequeña evidencia en un aspecto de nuestra cultura que requiere más atención: la falta de tradición científica. Con esto no pretendo generar necias comparaciones ni desconocer las grandes cualidades que tiene nuestra propia cultura;
tampoco pretendo considerar que la ciencia sola y pura sea fuente exclusiva de la solución de todos nuestros problemas. Simplemente quisiera contribuir a hacer evidente un aspecto que es indispensable para desarrollar con mucha más decisión, para tener verdaderas posibilidades de resolver los más acuciantes problemas nacionales, como también aquellos problemas que aún no podemos ver en los desafíos de desarrollo que debemos afrontar.

Nuestra poca tradición científica se hace evidente no solamente al mirar a los países más desarrollados, sino al compararla con nuestras grandes riquezas literarias, artísticas, culturales, en tradiciones y otros saberes. Esto significa que tenemos relativamente poco patrimonio de conocimiento objetivo, científico y tecnológico y, aunque lo estamos construyendo, no puede seguir siendo un ingrediente secundario de las complejas recetas sociales que demandan los tiempos modernos a las naciones y que pretenden construir niveles importantes de desarrollo.

El conocimiento objetivo enriquece a una sociedad no sólo con valiosas herramientas, métodos, información y formación; la enriquece, en particular, con conceptos nuevos de la realidad que, por definición, son de valor universal y permanentes. Esa es una riqueza de la sociedad, pues le da al individuo la autoridad intelectual indispensable para afrontar con confianza los predecibles e impredecibles retos propios de las rápidas dinámicas y de los permanentes cambios actuales. Por claro que parezca, y por evidente que sea, debemos resaltar permanentemente que estas posibilidades no llegan a ser reales sin un fortalecimiento muy importante del recurso más valioso de una sociedad, el recurso humano, particularmente en sus niños y jóvenes, es decir, la educación en todos sus niveles.

La educación es el mecanismo por excelencia que tiene una sociedad para desarrollar las capacidades más valiosas del ser humano, sus capacidades intelectuales y sensibles, necesarias para explotar su curiosidad, su capacidad crítica, su capacidad de reflexión; lo que le permite llegar a entender y ser creativo en la responsabilidad de intervenir permanentemente y con fundamento en el destino propio y en el social. La Física —y, en general, el conocimiento científico— no resuelve problemas, pero construye las capacidades y las condiciones necesarias para poder resolverlos.

El conocimiento científico abstracto tampoco nos revela necesariamente dónde debemos buscar las soluciones a nuestros problemas, ni lo que debemos esperar precisamente de las supuestas soluciones, pero nos conduce inexorablemente hacia donde la búsqueda es más útil, más justa, menos costosa e, incluso, menos egoísta, porque no está sometido a la subjetividad. Esta es una forma de consistencia de la clase de autoconsistencias que caracterizan el conocimiento objetivo, que con frecuencia son tan evi-
dent es y obvias cuando se las hace explícitas, que se nos olvidan fácilmente en nuestra
cotidianeidad, y que fácilmente las perdemos—particularmente, la consistencia entre la
intención y la acción—.

En lugar de repetir una vez más las trascendentales contribuciones que hizo Al-
bert Einstein hace cien años, quisiera resaltar algunos aspectos tanto de la dificultad
como de la importancia de hacer evidente la contribución de la física al desarrollo de la
sociedad humana. La forma tradicional de cumplir tal objetivo es mostrar la interesante
y rica historia que conecta retrospectivamente una tecnología de reconocida utilidad
social con los conceptos abstractos de la física teórica, generalmente propuestos décadas
atrás. Esa retrospectiva no es tan difícil de establecer porque parte de un valor práctico
y cotidiano reconocido en los diferentes sectores sociales y se relaciona de forma más o
menos minuciosa con algunos conceptos que, por lo menos, oímos mencionar alguna
vez en el colegio, en la universidad, en alguna literatura o en alguno de los abundantes
medios a los que hoy tenemos acceso.

Doy un breve ejemplo de este interesante proceso: la importancia de los com-
putadores y de las comunicaciones es innegable, debido a las grandes necesidades de
manejo de información de casi cualquier oficio; desde gobernantes, políticos, comerci-
ciantes, administradores, profesionales y técnicos de todas las especialidades, así como
para cualquiera de nosotros en situaciones tan cotidianas como obtener información
en la Internet o pagar con diferentes tarjetas magnéticas, en cualquier lugar, cualquier
cosa. Todo esto y muchas otras cosas son tan cotidianas y comunes que las tomamos por
dadas, y se nos olvida que serían imposibles sin entender la naturaleza más fundamental
de los fenómenos de interacción de la materia con la radiación, fenómenos que se han
venido entendiendo, en muy buena medida, gracias a las fundamentales contribuciones
de Einstein en su año maravilloso, hace cien años.

Podríamos mencionar infinidad de ejemplos y detallar los intricados e intere-
santes procesos que conectan el concepto teórico con la aplicación práctica, pero lo
que pretendo indicar es lo importante de ese valor en el sentido contrario: reconocer el
valor del conocimiento abstracto ahora para tener en el futuro la capacidad de construir
múltiples posibilidades de desarrollo, sin que necesariamente tengamos que definirlas a
priori, sin tener que explicarle al político, al gobernante, al comerciante, al ciudadano
general, que va a poder hacer muy poco de lo que ahora cree que va a poder hacer
sin las condiciones que van a existir, gracias a lo que ahora se está construyendo como
conocimiento abstracto y teórico. Muchos de los conocimientos teóricos actuales tienen
grandes posibilidades estimadas de aplicación; pero es posible que otros lleguen a ser
más poderosos y más útiles, sin que ahora podamos sospecharlo.
En las sociedades con más tradición científica, la aceptación de la importancia del desarrollo del conocimiento no se sustenta tanto en la discusión de la importancia del conocimiento por sí mismo; se apoya también en actitudes de quienes toman decisiones y, en buena medida, en las de la población en general, que valora la investigación, porque percibe que allí está la fortaleza de su futuro, tanto en la tecnología, que inevitablemente producirá, como en las capacidades y la visión que desarrolla. Un concepto objetivo nuevo, por abstracto que sea, inevitablemente se trasforma en nuevas facilidades, nuevas condiciones, nuevas oportunidades que enriquecen día a día nuestra vida cotidiana, llenándola de nuevas expectativas y esperanzas fundamentadas en la realidad y en el invencible espíritu humano.

Recurrí nuevamente a la justificación retrospectiva de la valoración pragmática del conocimiento. En términos generales, y en promedio, la esperanza de vida y la calidad de vida del ser humano por lo menos se han duplicado en los últimos cien años. Si tomáramos cada uno de los bienes y servicios de la gran diversidad que rodean nuestra vida moderna —servicios médicos, públicos, sociales, lúdicos y deportivos, logísticos y económicos— y cada uno de nuestros bienes —computadores, aparatos de transporte y comunicaciones, la ropa o los alimentos, por mencionar sólo algunos— y miráramos la relación costo-beneficio, sería evidente el privilegio que es vivir en nuestros tiempos, y nos sorprendería ver el poco esfuerzo que nos significa tener acceso a tantas condiciones, comodidades y oportunidades que hace cien años eran inimaginables.

Cada uno de estos bienes y servicios, de los que hoy dependemos tanto, y que casi ignoramos cotidianamente, pero que de vez en cuando deberíamos mirar con admiración, tiene más de un camino lleno de aventuras, tragedias y triunfos que comienzan en sus antepasados: los conceptos puramente abstractos de la Física teórica de principios del siglo XX, que permitieron ir entendiendo y controlando ciertos aspectos de los fenómenos naturales para tener la posibilidad de ponerlos al servicio del bienestar y del progreso.

Sin embargo, ese carácter cotidiano, y esa pérdida de admiración sobre nuestros privilegios, hacen difícil que tengamos más presente la importancia del progreso de la Física, con los esfuerzos y sacrificios que demandó, lo que limita, a su vez, las posibilidades de continuarlos y redoblarlos para cumplir con las exigencias de los futuros a los que aspiramos: futuros sin enfermedades, sin violencia, sin desigualdad, sin odio. Todos esos aspectos que debemos reconocer como parte de la naturaleza humana, pero que el conocimiento objetivo sobre la naturaleza de las cosas y de nosotros mismos nos puede ayudar a entender y controlar para ponerlos al servicio del bienestar y del progreso.

Recalquemos que los beneficios del desarrollo de la física no se reducen exclusivamente a su potencial en la generación de nueva tecnología ni a su valor del conoci-
miento por sí mismo. Los beneficios están, también, en la generación de capacidades para resolver problemas, gracias a la objetividad y al método consistente que le son propios a la Física, como a todas las ciencias. Por esto, la Física se constituye ella misma en su propia fuente de nuevas importancias y justificaciones, construyendo su propia consistencia; la física, como estudio de los fenómenos naturales, permite el surgimiento de un círculo virtuoso y enriquecedor. A medida que progresamos en la compresión de nuestra propia naturaleza, progresamos en el enriquecimiento de nuestra visión del mundo y de nosotros mismos, se nos hacen evidentes nuevas posibilidades, adquirimos nuevas capacidades, nuestra sensibilidad percibe nuevas emociones; enriqueciendo nuestros intereses, progresamos en nuestra consistencia, facilitándonos el camino hacia la realización individual y colectiva.

El progreso científico, y el de la física en particular, genera permanentemente formas de percepción enriquecidas con los diferentes aspectos de la realidad, desde los más abstractos hasta los más concretos. Los aspectos concretos son bastante más fáciles de entender debido a que la Física clásica, que tuvo su época dorada a finales del siglo XIX, permitió construir el conocimiento necesario para establecer las leyes naturales de los fenómenos a escalas humanas, lo que hizo posible la revolución industrial.

En contraste, los aspectos abstractos no son tan fáciles de entender porque son menos evidentes en nuestra vida cotidiana, demandan un esfuerzo de abstracción. Por ejemplo, no vemos evidentes las estructuras de las organizaciones de muchos entes individuales que interactúan para construir un objeto o una empresa, que es lo que nos es evidente. Percibimos con claridad las propiedades de dureza o flexibilidad de un material, pero no las sutiles diferencias de las interacciones de los mismos constituyentes atómicos que definen estas propiedades.

Todavía entendemos poco de las abstracciones surgidas de los estudios de la complejidad, que, a medida que progresan, sugieren cada vez más que las organizaciones sociales con normatividades más simples, pero más fundamentales, permiten dinámicas más adaptables, más flexibles y creativas, mientras que las tradicionales necesidades de predicción, planeación y prevención tienden a limitar las capacidades de respuesta a un mundo de progresos rápidos y, con frecuencia, impredecibles.

La Física es la ciencia que estudia las propiedades generales de la materia y establece las leyes que cumplen los fenómenos naturales. Después de Einstein, materia y energía son dos expresiones de lo mismo. Y la fuerza de la gravedad, que gobierna la estructura del cosmos, incluyendo nuestro sistema solar, donde se hace posible la vida y la conciencia, es una consecuencia de la forma espacio-tiempo. Entonces, la Física termina estudiando mucho más de lo que tradicionalmente creemos que estudia: no sólo estudia lo tangible, también estudia muchos intangibles, incluyendo la información.
Cómo es posible crear y destruir información. Cómo se almacena y transmite. Cómo se transforma para transformar la materia, la energía y la información misma, permitiendo que surjan, por medio de procesos evolutivos y auto organizativos, unas realidades más ricas y más complejas, como la vida de lo inerte, la conciencia de lo vivo y la sociedad y la cultura de la conciencia, donde cada individuo constitutivo se enriquece al constituir algo más rico que él mismo.

Similaresmente, la Física, por ser ciencia, va acumulando conocimientos objetivos, de validez universal y permanente, lo que le significa un constante enriquecimiento y progreso, proceso en el cual los conocimientos individuales que la constituyen interactúan y, eventualmente, se auto organizan para generar un salto cualitativo, como el que se produjo de la Física clásica a la Física moderna, pasando de lo más evidente a lo más abstracto, pero igualmente natural y físico.

Me parece que no es ni ingenuo ni pretencioso esperar que cualquier persona, independientemente de su interés o su oficio, pueda enriquecer su perspectiva de la realidad incrementando su conocimiento objetivo al interesarse en los progresos de la Física y esperar beneficios personales y sociales al aumentar sus herramientas y conceptos para definir preguntas clave, entenderlas y tratar de resolverlas. Lo que sí considero que puede ser ingenuo es pretender desarrollar un país, en un mundo globalizado, sin invertir considerablemente en la generación de conocimiento. No comprenderlo ya no es justificación en ningún negociante ni político o gobernante modernos. Las personas que dirigen la sociedad, en cualquiera de sus aspectos, deben conocer la relevancia y la relación ineludibles del desarrollo del conocimiento con el desarrollo de los diferentes aspectos de la vida cotidiana para poder tomar mejores decisiones.

Las fantásticas historias que conectan todo lo que conocemos hoy con las historias más abstractas de la física teórica de los últimos cien años son aventuras que resultan mucho más interesantes de lo que parecen, pero sólo pueden ser una satisfacción para quienes tienen la audacia de aventurarse a tratar de entender algo de la extraordinaria riqueza de los fenómenos naturales, y no someterse simplemente a la utilización despreocupada de algunos de sus productos.

En el afiche que recibieron con la libreta de apuntes recopilamos algunos hitos de la física y de sus aplicaciones, como también algunos de los acontecimientos importantes de la historia de la Física en Colombia (que la Directora de Colciencias resaltó brevemente en su discurso inaugural). Allí pueden observar que la Física en Colombia es aún muy joven e incipiente, considerando los retos que representa el desarrollo moderno.

Aunque en Colombia se han hecho esfuerzos muy importantes, todavía estamos construyendo los recursos humanos y sociales para poder contribuir de forma signifi-
cativa al progreso de la Física mundial, con los beneficios que representa el ser parte del desarrollo del conocimiento, y no simplemente someternos a observar su progreso comprando costosamente algunos de los beneficios que produce pretendiendo, además, que nos sean tan útiles como lo son para quienes los crean y los desarrollan.

Por muy bien entrenadas que estén nuestra sensibilidad y nuestra mente, la primera impresión que obtenemos de las cosas rara vez es una buena representación de su realidad, menos aún si ésta es muy rica y compleja. La construcción de una visión objetiva de la realidad demanda un esfuerzo metódico y consistente para superar las tendencias de nuestra subjetividad.

Desde el punto de vista de las humanidades y las denominadas ciencias blandas, existe la crítica respecto a la Física y a las llamadas ciencias duras de ser reduccionistas y simplistas y de tener la pretensión de entender la realidad compleja como una suma de cosas simples. Si miramos la Física moderna, esta crítica ya no está tan bien fundamentada. Si bien la Física usa el reduccionismo, no se reduce a ello. Hoy en día, y cada vez más, la Física está desarrollando métodos y conceptos que permiten integrar y reconstruir sistemas muy complejos, con gran cantidad de constituyentes e interacciones entre ellos, para explicar cualidades emergentes y evolutivas.

La creciente interdisciplinariedad que demanda el desarrollo del conocimiento moderno, donde las disciplinas tradicionales no sólo se necesitan, sino que se enriquecen mutuamente, para poder entender de forma más profunda y contextual fenómenos mucho más complejos y ricos; demanda, a su vez, nuevas capacidades que nos permitan superar paradojas y contradicciones impuestas por la antigua necesidad de establecer fronteras y dominios bien definidos para cada disciplina tradicional. Esto no quiere decir que se ignoren la identidad y el progreso individual de cada disciplina; por el contrario, la interdisciplinariedad verdaderamente útiles para el desarrollo de nuestro conocimiento sólo puede surgir de disciplinas fuertes y permanentemente desarrolladas.

La capacidad de desarrollarse no necesariamente pone en riesgo la identidad y la independencia; por el contrario, las fuertes identidades son la materia prima de las nuevas organizaciones, más poderosas y con cualidades y capacidades antes insospechadas, siempre y cuando se aprenda a explotar cada vez más la colaboración, la tolerancia, la comprensión y la conciliación. Ya la Matemática y la Física lo han comprobado repetidas veces, tanto de forma abstracta, teórica y experimental como observando los fenómenos en su forma más natural. Dos estrategias perdedoras con capacidades cooperativas pueden ser mucho más exitosas que la estrategia independientemente más exitosa.

Las ciencias sociales, económicas y culturales también lo han demostrado en los procesos de desarrollo y progreso, pero las organizaciones sociales, las autoridades y,
principalmente, todos y cada uno de nosotros, aún no tenemos claro ni nos es suficientemente evidente el gran potencial de las cualidades cooperativas para lograr los progresos económicos y sociales que, aunque significan sacrificios individuales, éstos se ven ampliamente recompensados por los beneficios que recibe el individuo a través del desarrollo social. Aquí es claro que la condición humana egocéntrica es el obstáculo más difícil de superar; pero es ahí donde el conocimiento objetivo nos ofrece posibilidades de entenderlo y controlarlo para superarnos nosotros mismos.

La física se ha desarrollado con gran éxito estudiando los sistemas más simples, tratando de reducir todo a sus constituyentes más fundamentales y estudiando sus interacciones. Una de las múltiples consecuencias de la acumulación del conocimiento de la Física generado con este método es el de su propio desarrollo, construyendo herramientas de análisis y conceptos de comprensión más profundos y poderosos, que progresivamente le han ido permitiendo asumir retos más complejos, más ricos, menos desconectados de su entorno, más realistas y más directamente relacionados con nuestras necesidades cotidianas. Hoy en día, la Física moderna sigue profundizando en la búsqueda de lo más fundamental, pero también está progresando rápidamente en la descripción de las realidades más complejas, sin que necesariamente tenga que partir de los constituyentes más fundamentales. Esto le ha permitido dar origen a nuevas áreas de gran capacidad interdisciplinaria.

Dos ejemplos muy interesantes de la creciente interdisciplinariedad de la Física y las ciencias sociales son la econofísica y la sociofísica, que ya ha sido mencionada anteriormente y sobre la que el profesor Kümmel hizo una muy interesante presentación. Tanto en una como en la otra, la Física aplica herramientas y conceptos principalmente, mas no exclusivamente, originarios en la física estadística, en la termodinámica, en la teoría de la complejidad y en la teoría de la información.

Estas dos áreas interdisciplinarias de la Física moderna se especializan en entender cómo surgen nuevas modalidades a partir de las características e interacciones de una gran cantidad de individuos constituyentes y, viceversa, tratan de entender las cualidades e interacciones que constituyen y generan organizaciones con cualidades y capacidades cualitativamente diferentes a las que se podían esperar simplemente juntando o sumando los individuos y sus cualidades individuales.

En este marco conceptual, las interacciones y los individuos pueden ser tanto 'físicos' como abstractos o una combinación de los dos, lo que permite, en principio, aplicar los conceptos de diferentes áreas de la Física a fenómenos económicos y sociales. Con esto no pretendo decir que la economía y la sociedad se puedan reducir a los modelos que de esta forma puedan surgir; simplemente digo que aportan una nueva
información objetiva que puede ser muy útil para comprender tan complejos y ricos aspectos de la realidad de las organizaciones y los procesos humanos, como los económicos y los sociales.

Estas dos nuevas áreas de estudio de la Física son un ejemplo de cómo van surgiendo, más clara y explicitamente, las relaciones, cada vez más estrechas y evidentes, de la Física con sectores considerados tradicionalmente lejanos y que supuestamente atienden problemas más urgentes. Es otra forma de mostrar cómo la Física se hace cada vez más cercana a las necesidades más inmediatas de las personas y cómo se va haciendo cada vez más directamente aprovechable en nuestra cotidianeidad.

Espero haber contribuido en algo a crearles algunas inquietudes intelectuales y sensibles hacia el aprecio y la valoración de la Física, pero también inquietudes prácticas sobre su gran potencial para apreciar y aprovechar los aspectos más trascendentales y cotidianos de la vida y, de esta forma, aumentar nuestros niveles de interés en la Física, con nuevas perspectivas. Para mí, lo ha sido. Y poder propiciar un apoyo más decidido que nos permita explotar más los extraordinarios beneficios y las satisfacciones que puede proporcionar, muchos de los cuales ahora ni siquiera los podemos imaginar.

Muchas gracias.
Conferencia Plenaria

Energía, creatividad y crecimiento económico

Reiner Kümmel*

Me siento muy honrado de dar esta charla después del profesor Giaever, pues su trabajo de 1970 fue clave para mi investigación de doctorado con el profesor Bardeen en la Universidad de Illinois, donde continué trabajando con superconductores. Cooperé en la creación de un programa de maestría en la Universidad del Valle, en Cali, a principios de los años setenta. La interacción con los brillantes estudiantes y colegas de la Universidad del Valle me enseñó mucho y mi experiencia en Colombia me motivó a ingresar en un campo energético nuevo (luego de habermme convertido en miembro de la Facultad de Física de la Universidad de Würzburg), la ciencia de la energía. Mi conferencia se centrará en los temas de energía, creatividad y crecimiento económico.

Hablare primero de las diferentes relaciones que tienen la física y la economía, después continuaremos con los impactos que han tenido los incrementos en el precio del petróleo como consecuencia de las guerras en Medio Oriente. Estas consecuencias y el crecimiento económico, en general, no son bien entendidas cuantitativamente por la doctrina económica reinante, de manera que vale la pena ensayar una teoría heterodoxa. De esta teoría resultan poderes productivos de los factores de producción —capital, trabajo, energía y creatividad— que permiten entender el creciente desempleo, el aumento en los déficits fiscales y la ampliación de la brecha entre ricos y pobres. Las conclusiones presentan sugerencias sobre cómo se pueden reducir las inestabilidades sociales.

Hace mucho tiempo, una minoría de economistas ha sido consciente de que hay problemas en la teoría convencional de producción; por ejemplo, ya en 1927 un econo-
mista escribió, en el Journal of the American Institute Association, que «una cosa tan importante en la vida industrial como el poder energético merece más atención que la que ha sido por parte de los economistas». Una teoría de producción que realmente explique cómo se produce el bienestar tiene que analizar la contribución del elemento energía. Este análisis es el tema de mi conferencia.

Hace 30 años dos economistas suizos señalaron el error decisivo de la economía tradicional de no considerar la energía como factor de producción. Y, sobre la distribución de las riquezas dentro de la sociedad, el multimillonario, pensador y filántropo George Soros escribió recientemente que «la carga de los impuestos se ha desplazado de los propietarios de capital a los consumidores, de los ricos a los pobres y a la clase media. Eso no es lo que se le ha prometido a la gente, pero no se debe considerar como un efecto marginal, porque eso es precisamente lo que los fundamentalistas del mercado anhelaban».

La más importante contradicción que existe es entre la visión del mundo por parte de la Física, de un lado, y de la doctrina económica reinante, del otro. Las dos primeras leyes de la termodinámica, que son tan poderosas, representan la constitución del universo: nada ocurre en el mundo sin la conversión de energía y la producción de entropía. La conversión de energía en trabajo mueve el mundo y la producción de entropía está asociada con la producción y la emisión de calor y de corrientes de partículas. Esto es lo que nos enseña la termodinámica de no equilibrio. Las consecuencias ecológicas de la producción de energía merecen otra conferencia; hoy me limito a los efectos económicos del uso de la energía.

En contra de la termodinámica, la doctrina económica tradicional cree en la posibilidad de sustituir todo por todo; esto condujo al laureado Premio Nobel de Economía Robert Solow a decir: «efectivamente, el mundo puede manejarse sin recursos naturales». Y dijo esto cuando discutió la importancia de los recursos naturales, especialmente la energía, durante la primera crisis de la energía; sin embargo, él añadió: «cuando la producción por unidad de recursos naturales sea limitada, entonces, la catástrofe será inevitable». Y esto tiene lógica, porque, debido a las dos primeras leyes de la termodinámica, la producción por unidad de energía es limitada, pero hay esperanza. Lo importante es que la termodinámica y la economía cooperen.

La termodinámica trata sobre las fuerzas físicas que actúan en la producción industrial de bienes y servicios; fue desarrollada al principio de la era industrial para entender las máquinas de calor y evitar que estallaran. La economía trata sobre el comportamiento humano en los mercados en los que se forman los precios de los bienes y servicios. Por eso se necesitan ambas, termodinámica y economía, para entender lo que realmente pasa en las economías industriales modernas.
Quizás los eventos económicos más importantes a escala mundial durante los últimos treinta años han sido las alzas desmesuradas del precio del petróleo. Los picos del precio internacional del petróleo son consecuencia de guerras en Medio Oriente: primero, la Guerra del Yom Kippur entre Israel y sus vecinos árabes; segundo, el ataque de Irak contra Irán; tercero, la invasión de Irak a Kuwait y la expulsión de sus tropas por una operación aprobada por las Naciones Unidas, y, cuarto, la invasión de Irak por Estados Unidos y sus aliados. El precio real del petróleo crudo está casi tan alto hoy como hace veinticinco años.

Las consecuencias para la economía de Estados Unidos se ven en el desarrollo empírico del uso de la energía en la industria estadounidense entre los años 1960 y 1996 y se ven también en el desarrollo del capital y del trabajo. Esas oscilaciones en el uso de la energía y las oscilaciones del crecimiento económico se muestran con los puntos negros y surgieron como resultado de las estadísticas; los puntos rojos son el resultado de la teoría que voy a presentar más adelante. El producto interno bruto se redujo entre 1973 y 1975 y entre 1979 y 1980; similares reducciones ocurrieron en los demás países industrializados. Estas fueron las primeras crisis de energía.

Los economistas neoclásicos, quienes dominan los análisis cuantitativos, todavía dudan que pueda existir una relación real entre la reducción en el uso de la energía y la caída del crecimiento económico. La explicación la dio el econometrista Dennison: «la importancia económica de la energía en relación con la importancia total de todos los factores de producción es apenas de 5%. De manera que una reducción en el uso de la energía del 1% puede reducir el producto interno bruto en apenas 0,05%». Según eso, la reducción en el uso de la energía en 8,8% (que es la reducción actual) entre 1973 y 1975 solamente habría podido causar una reducción en el PIB de Estados Unidos en apenas 0,44%; en realidad la reducción del PIB fue cuatro veces mayor, pero los economistas neoclásicos insisten en que no tiene nada que ver con la reducción en el uso de la energía.

Este razonamiento de la economía neoclásica se basa en un modelo matemático que fue desarrollado en el siglo XIX en completa analogía formal con la mecánica clásica, que en ese entonces fascinaba a todas las demás ciencias. La Física nos enseña que los sistemas mecánicos están en equilibrio en el mínimo de su energía, de su energía potencial, cuando todas las fuerzas se anulan. Análogamente, los economistas neoclásicos suponen que los sistemas económicos también se encuentran en un equilibrio verdadero en el que es posible la sustitución instantánea de todos los factores de producción. Y, en este equilibrio, el peso con el que un factor de producción contribuye al crecimiento económico es igual a su cuota en el costo total de los factores productivos.
En los países industrializados, el promedio de estas cuotitas es aproximadamente de 25% en el caso del capital, de 70% en el del trabajo y de apenas 5% en el de la energía. Por eso, la doctrina económica imperante tiene en cuenta solamente capital y trabajo como factores de producción que realmente importan. El factor tierra, tan importante en los países de economías agrarias, ya no se puede aumentar y, por eso, no entra en la teoría del crecimiento económico. Con estos pesos que le asignan los economistas tradicionales a los factores de producción, la teoría neoclásica tampoco puede explicar el crecimiento económico observado actualmente porque ese crecimiento económico es mucho mayor que el crecimiento teórico.

La diferencia es conocida como el residual de Solow y se lo atribuye normalmente al llamado progreso tecnológico; esto ha resultado en grandes críticas por parte de los economistas mismos a la teoría de crecimiento neoclásico que tienen. Así lo admitió Robert Solow, que es el fundador de la teoría neoclásica, por la cual recibió el Premio Nobel. Cuando él escribió la teoría neoclásica del crecimiento económico dejó sin explicación el factor principal del crecimiento económico: el progreso tecnológico. Éste es sólo un nombre para una cosa que no se puede entender realmente, pero se lo describe con ciertas funciones dependiendo del tiempo, pero, como dijo Solow, no se sabe qué es eso del progreso tecnológico. La termodinámica nos presta la luz que ilumina lo que significa ese progreso tecnológico. Primero voy a usar un razonamiento intuitivo y, después, uno matemático.

El primero se basa en el concepto de los esclavos de energía, los que en número creciente han entrado al servicio del hombre en el curso de la historia. Un esclavo de energía consume, aproximadamente, 3 kilovatios de energía primaria, lo que equivale a la cantidad de calorías de trabajo que necesita un obrero de un trabajo rudo. En este sentido, el número de esclavos de energía trabajando por persona era de 1 en las sociedades de cazadores y recolectores en posesión del fuego; de 4 en las primitivas sociedades de campesinos, 3.000 años después de la revolución neolítica; de 9 en las sociedades de campesinos y artesanos de la Edad Media en Europa; de 30 en Alemania, 130 años después de la revolución industrial; de más de 40 esclavos de energía en la actualidad para cada alemán y de más de 90 para cada estadounidense. En el promedio mundial, trabajan, aproximadamente, 15 esclavos de energía para cada hombre, pero en los países en vías de desarrollo son apenas 6.

¿Qué hacen los esclavos de energía? Ellos trabajan en nuestras estufas, en las máquinas de calor, en los procesadores de información. Y la producción industrial consiste en trabajo físico y en procesamiento de información; los esclavos de energía ejecutan cada vez más trabajo de rutina y procesan cada vez más información. Gracias a ellos,
la información y la globalización aumentan; y los esclavos de energía producen riqueza y destruyen puestos de trabajo de rutina, porque los ocupan. Lo dicho se puede ver claramente en fotografías de las fábricas de automóviles de Opel en Alemania. Se ve la nueva fábrica en una ciudad alemana: no hay personas, sólo máquinas dirigidas por computadores y animadas por energía eléctrica; en la otra fábrica —que fue establecida en 1972— se ven personas (y están considerando cerrar esta fábrica porque requiere muchos operarios costosos).

Ahora quisiera mostrar, con algunas ecuaciones, cómo un análisis cuantitativo del proceso de producción industrial conduce a conclusiones sobre la importancia económica de la energía que contradicen, fundamentalmente, la doctrina económica ortodoxa. Cuando uno proclama herejías necesita argumentos sólidos para sostenerlas, y la combinación de las matemáticas con la experiencia puede proveer argumentos que, a menudo, han salido bien para abrir nuevos horizontes, como lo demuestra la historia de la Física. Lo que es de especial interés es la dependencia del PIB de los factores de producción —capital, trabajo, energía y creatividad—. Es importante entender que, en este contexto, capital no significa dinero en el banco sino el conjunto de todos los dispositivos que convierten energía y que procesan información y todas las demás instalaciones para la operación y la protección de estos dispositivos.

El trabajo manipula el capital, y la energía lo activa; la creatividad humana consiste en ideas, inventos, innovaciones y decisiones sobre valores —se manifiesta, entre otros, en nuevos componentes del capital, por ejemplo, computadores—. Es conveniente trabajar con variables que están normalizadas a sus valores en un año básico. Las letras minúsculas indican el output, que es el producto interno bruto, indican el capital, el trabajo y la energía, normalizados a sus valores en el año básico. La creatividad causa, probablemente, una dependencia explícita del tiempo en la función de producción. Esta función describe, matemáticamente, la producción y el crecimiento económico en dependencia de capital, trabajo y energía y de tiempo. Se calcula esa función de producción de la ecuación de crecimiento —y es la única ecuación en la que les solicito fijarse un poco—. Voy a explicar lo que significa todo esto de una manera un poco intuitiva.

Esta ecuación dice que la tasa de crecimiento económico, es decir, el cambio relativo del PIB está dada por la tasa de crecimiento del capital, la tasa de crecimiento del trabajo y la tasa de crecimiento de la energía y del tiempo. Estas tasas de crecimiento están multiplicadas por esas cantidades —alfa, beta, gama y delta—, que los economistas llaman las elasticidades de producción. Formalmente, vienen dadas por esas diferenciales parciales. Lo importante es que estas cantidades dan los pesos con los cuales los cambios relativos de los factores de producción contribuyen al crecimiento económico y, en ese sentido, esas cantidades —alfa, beta, gama y delta— indican los poderes productivos
de los factores de producción. Alfa, beta, gama y delta dan la importancia económica, los pesos, de los factores de producción.

Hasta ahora todo es como en la economía tradicional, pero ahora empieza la herejía. La economía neoclásica da a estas cantidades un peso igual a las cuotas en el costo total de la producción. Es decir, la economía convencional dice que alfa es, más o menos, un 0,5; beta (trabajo) es 0,7 y gama (energía) es 0,05. Como dije antes, con eso no se puede reproducir el crecimiento económico.

Calculamos alfa, beta y gama como soluciones de un sistema de ecuaciones diferenciales que resultan de exigencias matemáticas muy generales que cualquier función de producción tiene que satisfacer. Usamos las soluciones no triviales de estas ecuaciones diferenciales que dependen, sencillamente, de capital, trabajo y energía. Esas funciones, o elasticidades de producción, se incluyen en las funciones de crecimiento y obtenemos, así, la función de producción Linox que depende, linealmente, de la energía y, exponencialmente, de cocientes entre trabajo/capital, energía/capital, trabajo/energía, y además dependen de parámetros tecnológicos que, a su vez, dependen del tiempo cuando la creatividad está actuando. Hemos calculado esos parámetros ajustando la función Linox al output empírico y teniendo en cuenta que los factores de restricción no deben ser negativos. Ésa era la reflexión desde el punto de vista de las matemáticas.

Veamos ahora los resultados de la teoría. Vemos el crecimiento empírico del capital, el cambio del trabajo y el cambio de la energía. A la derecha vemos el crecimiento del PIB alemán y los puntos rojos son el resultado de la teoría y los cuadrados negros son los valores empíricos. El tiempo considerado va desde 1960 hasta el 2000. Vemos la República Federal de Alemania, antes de la reunificación en 1990. Vemos que las oscilaciones en el crecimiento económico siguen las oscilaciones en el uso de la energía. Lo mismo se ve en el desarrollo del sector industrial alemán, en donde las oscilaciones en el uso de la energía se reflejan en las oscilaciones en el crecimiento económico porque la contribución al PIB es aún más fuerte. Noten que el trabajo —es decir, las horas trabajadas— disminuye en Alemania, mientras que queda prácticamente constante en Japón (y allí la energía creció hasta la primera explosión en el precio del petróleo). Vemos que están casi idénticos el crecimiento empírico y el crecimiento teórico.

En Estados Unidos observamos las fuertes oscilaciones en el uso de la energía, alrededor de las explosiones en el precio del petróleo, y también se ven las oscilaciones en el producto interno bruto empírico y teórico. A diferencia de lo que ocurrió en Alemania, en Estados Unidos aumentó el número de horas trabajadas. A pesar de las diferencias, esta teoría describe muy bien los tres sistemas —Alemania, Japón y Estados Unidos— con una extraordinaria coincidencia entre los datos empíricos y los teóricos. Ahora viene el resultado más importante: hemos calculado los valores numéricos de
las elasticidades de producción de la función Linox. La tabla demuestra los promedios tomados sobre los tiempos indicados para los diferentes sistemas económicos. Estos promedios significan el poder productivo de capital, trabajo, energía y creatividad.

En los sectores industriales, el poder productivo de la energía (gama) es casi diez veces más grande que la cuota de energía en el costo total; en las economías totales, en las que se incluyen también los servicios, el costo de la energía es menor que en los sectores industriales, pero sigue siendo seis veces más grande en Estados Unidos y ocho veces más grande en Alemania que el costo de la energía en la cuota total. Lo contrario se ve para el trabajo humano. Su poder productivo, o su peso en el total de los costos de producción, es hasta diez veces menor en Estados Unidos y seis veces menor en Alemania. Hay una gran diferencia entre el poder productivo del trabajo y su costo para la producción; mientras que en el caso del capital hay equilibrio entre su poder productivo y su costo.

Hemos visto que la energía es barata y que tiene un poder productivo alto. El trabajo es costoso y tiene un poder productivo pequeño. Como consecuencia, se reemplaza el trabajo costoso por baratas combinaciones de energía y capital; esto resulta en algo a favor de la globalización porque bienes y servicios producidos en países con bajos salarios pueden ser transportados a bajo costo a países con salarios altos. Por eso, casi todos los claveles que se venden en Alemania vienen de la Sabana de Bogotá.

Las consecuencias son que en los países con altos salarios desaparecen los trabajos de rutina y aumentan los beneficios que reciben los dueños de los esclavos de energía, que son los propietarios del capital. Adicionalmente, las emisiones que desestabilizan el clima mundial aumentan con el creciente uso de las energías fósiles. Cuantitativamente, la tabla muestra que el desempleo creció en los países industrializados del G7 durante los últimos treinta años; creció mucho en países con fuertes sistemas sociales —como Francia y Alemania— y creció menos en Estados Unidos y Gran Bretaña. La brecha entre ricos y pobres se amplió mucho más; la desigualdad en la distribución del bienestar en los países industrializados se acerca a la que existía en Colombia en los años setenta y el número de los millonarios creció mundialmente (en 3,6% en el 2002 y en 8% después). La deuda pública sigue creciendo cada vez más porque cada vez se pagan menos impuestos. Por ejemplo, en Estados Unidos, el déficit fiscal —sólo el del gobierno central, sin las demás corporaciones públicas— aumentó de 57% a 67% entre el 2002 y el 2004. En Alemania, el déficit fiscal de todas las corporaciones públicas aumentó de 61% del PIB en el 2002 hasta 65% del PIB en el 2004, y ahora está alrededor del 68%.

Para combatir el crecimiento de la pobreza, el desempleo y el déficit fiscal, y para estimular la conservación de la energía y mitigar las emisiones hay que reajustar las con-
diciones que regulan el funcionamiento del mercado al desequilibrio que existe entre los poderes productivos y las cuotas de los factores de producción. Esto significa, para los países industrializados, cobrar la carga de los impuestos y derechos desde el trabajo a la energía, de tal manera que la cuota del costo de estos dos factores se acerquen a sus poderes productivos respectivos. En otras palabras, gravar a los esclavos de energía y liberar de impuestos el trabajo humano. Significa, para países en vías de desarrollo que exportan energía, elevar los impuestos sobre la exportación de energía y usar los ingresos resultantes para educación, investigación científica e inversiones en puestos de trabajo con alta intensidad de trabajo humano bien calificado.

¿Qué tipo de hombre puede activar la creatividad para el bien común? Debe ser un enérgico servidor del pueblo; un valiente luchador por justicia y paz; un hombre que tenga fe en el destino noble de los hombres. Debe ser alguien así como Isaías Duarte Cancino, arzobispo de Cali, quien sufrió el martirio el 16 de marzo del 2002, uniéndose así a Juan Gerardi de Guatemala y a Oscar Romero de El Salvador. Hombres como ellos, aunque sean pocos, dan la esperanza de que la lucha para un mundo más justo no es inútil.

Muchas gracias

* Preguntas

F. Asumiendo que la energía es un factor barato, en el momento en el que la energía se vuelva costosa ¿la fórmula predice una crisis económica?

F. La teoría que he presentado es completamente independiente del costo de la energía, porque hemos sacado los poderes productivos de la función Linox ajustándola a los datos empíricos. Pero, para la teoría neoclásica, eso significaría un gran cambio porque la cuota de la energía cambia mucho. Si el precio de la energía aumentara hasta llegar a ser igual al poder productivo, la teoría neoclásica daría un resultado similar a la teoría que expuse hoy aquí.

En la fórmula no se usaron cantidades monetarias sino los valores empíricos. Se usaron horas trabajadas, cantidad de energía consumida y valor del capital. Estos valores los calculamos con un sistema de optimización de ecuaciones que permite deducir los valores empíricos de exigencias de minimizar el costo de la producción y maximizar las ganancias, etc. El sistema lo desarrolló un joven que trabajó conmigo; esa fue la tesis con la que él obtuvo su PhD en Economía. Sobre este sistema no hablé aquí porque eso requeriría otra conferencia de dos horas.
Mesa redonda I

Moderador:
Eduardo Posada Flórez.
Director del Centro Internacional de Física.

Participantes:
Cecilia López Montaño.
Precandidata presidencial.
Gerardo Remolina
S. J. Rector de la Universidad Javeriana.
Juan Esteban Betancourt
Presidente de Proantioquia.
Rafael Mejía López
Presidente de la Asociación de Agricultores de Colombia, SAC.
Felipe García
Subdirector de Programas de Desarrollo Científico y Tecnológico.

Intervención Eduardo Posada Flórez

En este Simposio se ha querido destacar la importancia de la Física para el desarrollo de la humanidad. Yo estoy convencido de que sin la mecánica cuántica no se habrían inventado los celulares y muchas otras cosas de nuestra cotidianeidad. La Física
ha sido la que ha promovido un cambio radical en la ciencia y en todos sus sectores. Ya lo dijo el profesor Giaever, la Química le debe mucho a la Física, al igual que la Biología contemporánea y la Bioquímica, en particular, pues se basan en los desarrollos de la Física. Yo pienso que, dada la amplitud de puntos de vista que hay en este panel, deberíamos concentrarnos en analizar la importancia que tienen la ciencia y la tecnología para el desarrollo económico y social del país.

Antes de darles la palabra, voy a presentarles unas cifras que me preocupan bastante. La gráfica fue desarrollada por unos físicos de Estados Unidos que estaban promoviendo el acelerador más grande del mundo y muestra cómo en la época de la Grecia clásica se desarrolló algo de conocimiento; con la caída del Imperio Romano se produjo un estancamiento en la producción de conocimiento, y en el Renacimiento, especialmente con las contribuciones de Galileo y, después, de Newton, se produjo una explosión de conocimiento. Ya lo recalzaba el profesor Giaever: aunque no descubramos nuevas leyes de la naturaleza, el número de posibilidades de inventar nuevas cosas es prácticamente infinito. Esto va a ser cada vez más importante para el sector productivo.

Cualquier país que quiera, realmente, ser competitivo tiene que darle una importancia enorme a la ciencia y la tecnología, que deben convertirse en prioridades para sus planes de desarrollo. Hay países que han hecho un desarrollo espectacular, en una generación, y que han sabido darle una importancia muy grande a la investigación y al desarrollo tecnológico y eso se ha reflejado en logros directos en el crecimiento económico. Es el caso de Irlanda, por ejemplo. Irlanda es un país de 4 millones de habitantes que hace treinta años no producía mayor cosa y que, gracias a una transformación radical de su sector productivo se convirtió en el principal productor de software, a la par con India. El caso de los países del sudeste asiático también es relevante, pues su desarrollo y crecimiento económico se basaron en la generación de conocimiento.

En América Latina, en cambio, no ha habido una inversión notable en ciencia y tecnología; al contrario, en los últimos años la tendencia predominante ha sido a disminuir, a pesar del enorme esfuerzo que está haciendo Brasil en este momento. Hoy en día, el 42,5% de la inversión en investigación y desarrollo tecnológico a nivel mundial se hace en Estados Unidos y Canadá; Europa hace el 27,5%; Asia, el 24,2; Oceania, el 1,1 y América Latina, el 1,6, pese a que América Latina tiene el 8% de la población mundial y, por tanto, debería hacer un aporte mucho más importante.

En Argentina hicieron recientemente un estudio en el que comparan el índice de desarrollo humano de la ONU y la inversión en ciencia y tecnología en distintos países de América Latina: Brasil es el país que más está invirtiendo (en el 2002 estaba alrededor del 1,2% del PIB) y tiene un índice de calidad de vida relativamente bueno.
Colombia está muy lejos de Brasil, tanto en inversión en ciencia y tecnología como en calidad de vida.

El otro dato que es preocupante es que la distribución de la inversión total, según la Red Iberoamericana de Ciencia y Tecnología, tomando como referencia el sector público, el sector privado y las universidades, es muy diferente en los distintos países. En Estados Unidos, Japón y la Unión Europea más del 70% de la inversión la realiza el sector privado, la industria, fundamentalmente. En estos países la industria entendió que el conocimiento es el motor del desarrollo y el crecimiento económico. En Colombia estamos, si mucho, en un 20% de inversión privada y la gran mayoría de la investigación en Colombia la están desarrollando las universidades. Es decir, el sector productivo, con la excepción, tal vez, del sector agropecuario, no ha reaccionado todavía a los retos que impone la globalización y no está invirtiendo en lo que podría ser la base de su supervivencia futura.

Hace 11 años, en la Misión de Ciencia, Educación y Desarrollo, hicimos una serie de planteamientos y, en el caso particular de la ciencia y la tecnología, se propuso alcanzar, por lo menos, el 1% del PIB para 1998 y el 2% para el 2004. Obviamente, era una utopía. La otra propuesta era incrementar el número de investigadores hasta el 1 x 1000 de la población, es decir, ahora deberíamos tener 45.000 personas dedicadas a hacer ciencia. Y, por último, que, por lo menos, el 40% de la investigación la financiara el sector industrial.

Hay un dato de la Secretaría de Ciencia y Tecnología de Argentina que, aunque todavía es preocupante, da cierta esperanza: el número de artículos publicados en el Science Citation Index de autores residentes en un país de América Latina. Brasil está disparado (cerca de 20.000 artículos en el año 2004); le siguen México, con una tendencia muy fuerte a crecer, Argentina y Chile.

Intervención de Cecilia López Montaño

Colombia se está acomodando peligrosamente en la mediocridad. Esa frase puede sonar muy dura, pero es cierta. Estamos creciendo a un 4%, pero eso es el PIB potencial, lo que significa que estamos creciendo al máximo posible, usando toda la capacidad instalada. Tenemos unos niveles de pobreza y miseria muy altos. Sin embargo, se ve algo de progreso con respecto a la crisis que tuvo el país; Colombia, con Costa Rica, fueron los únicos países que no perdieron la década de los ochenta. Pero en los noventas nuestra suerte sí fue similar a la del resto de los países de América Latina; después de los noventa entramos en un periodo de crisis, puesto que, por primera vez en sesenta
años, tuvimos una tasa de crecimiento negativa (en 1999, cuando decrecimos en más del 4%). Si se mira con respecto a esa tasa, obviamente el crecimiento actual llena de entusiasmo a mucha gente, pero eso es mediocre.

En Colombia tenemos que manejar dos agendas, la agenda del desarrollo y la de la paz. Y supeditar la una a la otra no está funcionando. Esas son agendas que interactúan, pero que tienen su propia dinámica. A diferencia de otros países de América Latina, Colombia debe buscar la senda del desarrollo y, además, la de la paz. Para salir de esta mediocridad, Colombia necesita hacer profundas transformaciones en todos los campos, pero transformaciones muy de fondo, porque si no vamos a seguir con un crecimiento del 4%, con la mitad de la población con un índice de pobreza altísimo y sin resolver el conflicto armado que tenemos.

Colombia tiene que hacer las reformas que siempre ha postergado. Aquí nunca se ha hecho una verdadera reforma agraria; hoy tenemos un índice de concentración de la propiedad rural de 0,8%, gracias a la contrarreforma que hicieron los paramilitares, los narcotraficantes y los otros grupos armados. No hemos hecho la reforma urbana; no hemos hecho la reforma fiscal fundamental que necesita el país.

El tema de la ciencia y la tecnología sigue siendo un dolor de cabeza, y lo es porque el país no lo ha asimilado como una prioridad. En Colombia el tema de la sociedad del conocimiento es marginal y no se discute. Pero es el momento de incluirlo dentro de las grandes reformas que requiere el país. Este tema siempre se asocia con el crecimiento económico y resulta que tiene una relación más grande e importante con el tema de la equidad. La equidad es la esencia de un planteamiento liberal. La falta de equidad no se resuelve únicamente reduciendo la pobreza, sino logrando una sociedad más justa. Y, para lograrlo, indiscutiblemente tiene que partir del fortalecimiento de la ciencia y la tecnología, por una inversión fuerte en investigación.

Uno de los problemas grandes que tiene el país tiene que ver con la mano de obra colombiana. Y, dentro de la mediocridad que nos caracteriza, estamos felices porque el desempleo ha bajado al 11%, cuando lo cierto es que tenemos aproximadamente 7 millones de personas en edad de trabajar ¡subutilizadas! Esas son las cifras que se desprenden del subempleo, sin tener en cuenta la gente que está dejando de participar. El tema de la mano de obra es la esencia del logro de la equidad. Cuando el 60% de la población en edad de trabajar está en el sector informal no hay posibilidades de salir adelante. No hay recursos suficientes para recoger los muertos de todas las decisiones que está tomando el país actualmente. Hay que enfocarse en crear empleo digno. Eso es la democracia económica: el derecho de todo hombre de generar unos ingresos que le permitan llevar una vida digna. En un país que está bajando el desempleo a punta de precariedad laboral, el tema fundamental debe ser el empleo digno.
Esto lo quiero relacionar con los temas de formación de capital humano y de desarrollo científico y tecnológico. Lo que es evidente es que la gente más capacitada es la que gana más, lo que pasa es que ese horizonte se ha ido moviendo hasta el punto en el que encontramos a la gente dispuesta a hacer cualquier cosa para subsistir, y ésa es la gente que absorbe gran parte del desempleo que ahora está bajando. El tema de investigación y desarrollo es un tema de equidad. Yo los invito a que ese sea un tema de investigación, para que pueda ser un tema de políticas públicas.

¿Cuál es el papel del sector privado en todo esto? Dentro de las grandes reformas que el país necesita está una nueva relación con el sector privado. Gran parte del éxito de India estuvo en ese cambio de relación con el sector privado. Que el sector privado participe no sólo de los beneficios, sino también de los costos y las obligaciones de las distintas etapas del desarrollo. El sector privado ha sentido que la pobreza y la concentración de ingresos es un problema del Estado y que su ayuda es a punta de filantropía —que considero que es un nombre sofisticado que se usa para dar limosnas—. La situación de pobreza y desigualdad es tan grave que se requiere mucho más que la mera filantropía, por eso el sector privado tiene que ser más activo en el aporte a la política redistributiva del país.

En cuanto a la ciencia y la tecnología yo también pienso que el sector privado considera que es algo que le es ajeno —y eso que no conocía esas cifras tan precisas que acaba de mostrarnos Eduardo Posada—. Incluso los más neoliberales de los liberales están diciendo que es la formación en empresa la que hace la gran revolución. Esperar a que el sistema educativo asuma totalmente la capacitación del recurso humano es esperar dos o tres generaciones. Aunque el Estado no puede zafarse de esa responsabilidad que tiene con la ciencia y la tecnología en el país, el sector privado tiene que asumir dos tareas muy importantes: ser dinamizador de todas las políticas de ciencia y tecnología y asumirlas como parte de la productividad que necesitamos para tener un país mejor y, asimismo, comprometerse con el tema de que los ingresos y los gastos del país sean progresivos.

Muchas gracias.

Intervención de Gerardo Remolina, S. J.

Muchas gracias por la invitación; confieso que me cogió por sorpresa porque no soy físico ni matemático. Me he desempeñado en el campo de la filosofía y es desde allí desde donde quisiera partir. El profesor Giaever hacía una pregunta y daba una respuesta categórica. La pregunta era ¿vale la pena hacer investigación? Y la respuesta
era: absolutamente sí. La importancia que tiene la Física, y la ciencia, en general, en una sociedad es absolutamente suprema, está a la vista de todos, y con la intervención del profesor Giaever quedó aún más patente. Es indispensable hacer investigación. Kierkegard decía: «hay cosas que son verdaderas, pero no son válidas». Lo que tenemos aquí es algo que es absolutamente verdadero: la necesidad de la ciencia, de la investigación. Pero no es válida porque no la hemos asumido de una manera real, no nos hemos comprometido con ello.

El profesor Giaever decía que hay que estar comprometidos con la ciencia si queremos salir adelante. Y ese compromiso exige una decisión política, pero política no sólo en el sentido de quienes ejercen esa noble profesión de la política, sino de todos nosotros. Es decir, que tomemos una decisión y que pongamos los medios concretos para la investigación. Me voy a apartar del tema propiamente teórico de la importancia de la Física en las sociedades contemporáneas y voy a bajar a temas muy prácticos y concretos de nuestra sociedad colombiana.

La primera es la estimabilidad que tiene la ciencia en nuestra sociedad colombiana. ¿Estimamos realmente la ciencia y sus aportes para la vida cotidiana del hombre? Hay un estudio de Colciencias sobre este tema y los resultados son realmente decepcionantes. La gente no aprecia lo que es la ciencia en sí; incluso, nuestra sociedad aprecia más elementos supersticiosos de la cultura que la ciencia misma. Uno de los pocos campos en los que la gente ve la importancia de la ciencia es en la medicina, pero en otros campos no ven la importancia de la ciencia. Y la gente no ve que, basta con que se vaya la luz, para que todas nuestras actividades queden paralizadas y nosotros mismos nos paralicemos.

Por otra parte, no existe un periodismo amplio de divulgación científica que vaya en la línea de hacer estimable la ciencia. Hay contadas excepciones. Las más evidentes se ven, nuevamente, en el campo de la medicina, al que hasta el periódico El Tiempo ha dedicado páginas enteras para poner al alcance del público algunos temas. También están la página de Portafolio sobre ciencia y tecnología; la franja infantil de televisión; los museos de ciencia; el programa Ondas y, muy especialmente, los programas de Maloca. Y, en ese construir la estimabilidad, hemos comenzado por donde se debe comenzar: por los niños y los jóvenes, que son la base de la sociedad. La pregunta que nos queda es cuándo llegaremos verdaderamente a los adultos, específicamente a que los industriales, los empresarios y los gobernantes tengan una estima suficientemente grande hacia la ciencia para comprometerse efectivamente con ella.

Se han hecho esfuerzos importantes por otros lados. Traigo el caso de un colegio de enseñanza primaria y secundaria, el Gimnasio Campestre, que tiene una publicación que se llama Astrolabio, una revista verdaderamente científica hecha por niños y
adolescentes, pero de un peso verdaderamente grande. Digno de elogio, y de mucho, es el programa de Jóvenes investigadores de Colciencias; ahí tiene el país un importante semillero, que tiene que desarrollarse y avanzar antes de que pueda fructificar.

Quiero volver al tema de la industria y la empresa. Yo comprendo que el sector privado empresarial fácilmente puede acudir más a la ciencia, a la técnica y a la tecnología del extranjero, pero es muy importante que entremos a hacer un verdadero pacto social entre industria-empresa-universidades-gobierno. Ya se firmó un pacto de ciencia, tecnología e innovación, pero hasta donde yo sé no hemos tenido mucho dinamismo y no tenemos mayores frutos para mostrar. Hay que poner a marchar ese pacto en el que nos comprometimos todos.

Esta mañana nos contaron que sacar un número de la revista Nature cuesta 2 millones de dólares; la investigación no se puede hacer si no hay unos fondos significativos destinados exclusivamente a ella. Es muy comprensible lo que decía la doctora Cecilia López, es necesario ser realistas en relación con nuestra situación, pero también hay que hacer un esfuerzo extraordinario en este campo. Los ejemplos que nos puso el doctor Eduardo Posada, Irlanda y los tigres asiáticos, son extraordinariamente elocuentes, pero, para lograr el éxito, esos países tuvieron que acudir a un pacto social. Colombia tiene que ser consciente de la necesidad de hacer válida la verdad de que la ciencia es indispensable.

Quisiera comentar la experiencia que tenemos nosotros desde la universidades. Los estudiantes que se presentan a Ciencias biológicas, químicas, matemáticas, físicas, son relativamente muy pocos, sobre todo para Física y Matemáticas. Sus padres difícilmente comprenden los esfuerzos económicos que deben hacer para costearles sus estudios. Ellos saben que, terminadas sus carreras, no van a encontrar empleo, a no ser en algunos laboratorios más o menos especializados. Entonces, el futuro laboral de estos estudiantes, que podría ser el futuro de nuestra propia ciencia, es realmente muy incierto. El campo laboral es muy limitado.

Sin querer ser presumido, hay que decir que una de las cualidades más reconocidas a los colombianos es su ingeniosidad o la capacidad de rebusque. Sin embargo, mientras nosotros no contemos con los conocimientos científicos que nos permitan pasar de esa actitud del rebusque a la de ser inventores, innovadores, estamos condenados a seguir siendo un país dependiente de lo que se haga afuera.

Para terminar quisiera referirme a lo que está haciendo el Icetex. Se ha concentrado en financiar estudios técnicos y tecnológicos, y es posible que tengan razón. Pero el país puede caer en una visión muy inmediatista y recortada de formar técnicos y tecnólogos, sin formar profesionales en las ciencias y en las técnicas. ¿No sería posible
privilegiar, junto con los estudios técnicos y tecnológicos, lo estudios científicos de las ciencias duras?

Muchas gracias.

Intervención de Rafael Mejía López

Yo quisiera recordar algunas cosas que damos por hechas. Una es el sector rural colombiano. Se nos olvida que en Colombia hay más de 40 millones de personas, pero todavía hay alrededor de 11 millones viviendo en el sector rural; se nos olvida que hay 17.800.000 empleos en el país, de los cuales casi 4.800.000 son del sector rural. Con este entorno, y como lo mencionaba Cecilia López, cuando se hace una medición de la pobreza por ingresos en Colombia se encuentra que se llega casi hasta el 54% de la población, y en el sector rural ya asciende al 84%.

Para mirar la función de la ciencia y la tecnología en este sector, que es tan complejo, primero el sector tiene que tener una política agrícola y, desafortunadamente, el país no la tiene. Debemos, pues, empezar por definir qué productos tenemos, cuáles son potenciales y en qué zonas los queremos. De esto se desprende cuál es la agenda interna dentro de la cual, además de las cosas tradicionales —infraestructura, transporte, etc.— llegamos a la ciencia y a la tecnología, a la educación y a la formación de recurso humano. Si como país logramos tener, y no sobra traer el ejemplo de Chile, qué queremos producir, cómo y para qué, podremos empezar a dedicar los escasos recursos que tenemos a tareas específicas.

Colombia tiene que pensar en otras cosas además de los cultivos tradicionales. Están los productos ecológicos, que se deben mirar desde el punto de vista de la demanda y no desde el de la oferta; están los productos genéticamente modificados, que se requieren para ser competitivos; está la agricultura tradicional, que debe modernizarse. Si logramos tener mayor productividad y logramos tener un equilibrio entre la productividad y el desarrollo social podremos salir adelante. Además de la pobreza, hay que pensar en el bienestar, en el empleo, en la salud, etc.

Para lograr eso, tenemos que usar y aprovechar, sabia y adecuadamente, la ciencia y la tecnología. Parte de ella debe ser desarrollada en el país y parte tiene que ser importada y adaptada. Para eso vamos a necesitar, en el futuro, todavía más recursos. En este momento se están vislumbrando grandes posibilidades entre el gobierno y el sector privado: nosotros ponemos y el gobierno pone. Esa es una idea que está en desarrollo y que puede ser parte de la solución; es sólo una parte porque simplemente el presupues-
to general de la Nación para el sector agropecuario, para el Ministerio de Agricultura y Desarrollo Rural y para el desarrollo rural, es cada vez menor.

Tenemos que generar y conservar empleo. Tenemos que generar crecimiento, pero este crecimiento del 4% no nos va a dar lo que necesitamos. El crecimiento es consecuencia de la inversión y ésta es consecuencia de la rentabilidad. El sector privado, las inversiones extranjeras, todo está basado en la rentabilidad hacia el futuro.

El sector agropecuario ve que estamos atrasados en ciencia y en tecnología; cuando la tenemos, muchas veces nos sabemos cómo transferirla a gran escala. Aquí vamos a tener que hacer un gran esfuerzo entre la academia, el gobierno y el sector privado para poder avanzar un poco más en estos campos.

Muchas gracias.

Intervención de Juan Sebastián Betancourt

Cuando me invitaron a esta reunión, tuve el mismo temor del padre Remolina. Sin embargo, ahora estoy un poco más calmado porque veo que nuestra labor aquí es dar testimonio de lo que se está haciendo en nuestras respectivas áreas.

Proantioquia es un instituto del sector empresarial de la región que propende por el desarrollo de la misma. Yo pienso que buena parte de los problemas que tiene el país se deben a algún problema que tuvimos, en algún momento de nuestra historia, con la educación. Y muy buena parte de la falta de competitividad que tenemos en el país se debe a un gran déficit en investigación. Si eso es así, hay que resolver esos dos problemas, porque obviamente están encadenados. La educación, desde la básica hasta la superior, y, por supuesto, la investigación.

Hay un problema de recursos; sin embargo, me pregunto, y lo hago desde el sector industrial, si es cierto que tenemos un problema de recursos, si realmente hay un problema fiscal serio. Porque, con todo, nos regalaron unos beneficios tributarios para renovar bienes de capital, beneficios que el sector empresarial, en general, no estaba pidiendo. Creo que hubiera sido más rentable y beneficioso que con esos 800.000 millones de pesos que se ganó el sector empresarial que hizo adquisiciones en bienes de capital —adquisiciones que de todas maneras iba a hacer—, se hubieran fortalecido las regiones frente a los problemas de violencia o se los hubieran dado a Colciencias para financiar investigaciones contundentes. Todos los colombianos tenemos que propender porque a Colciencias, a las universidades y a las instituciones que hacen investigación les den mucho más apoyo y más beneficios.
Antes de venirme para Bogotá, y ante el temor que tenía de estar en un foro debatiendo con físicos, fui al Departamento de Física de la Universidad de Antioquia y quedé sorprendido de ver lo que hace un profesor de Física en relación con la industria. Aquí mezclo dos temas. Aunque estamos muy lejos de lo medianamente deseable, y bastaría repasar las cifras que presentó Eduardo Posada para comprobarlo, en Antioquia hay una permanente interrelación entre los empresarios, o por lo menos un sector de ellos, y la universidad y centros de investigación para ver cómo sus aportes se pueden aprovechar en la industria.

Hablé con un profesor que dirige un diplomado en la Universidad denominado Teoría del color. Este trabajo le ha generado ahorros enormes a la industria automotriz porque antes compraban el paquete completo para dar color a los automóviles y a la industria de textiles y confecciones para sus tintorerías. Los descubrimientos que se han hecho, en combinación con las necesidades de la industria, les han ahorrado enormes cantidades de dinero a estas dos áreas de la industria.

En la institución que yo dirijo funciona el Centro de Tecnología de Antioquia, cuyo primer director fue el actual alcalde de Medellín, quien soltó la tiza de profesor de matemáticas para irse a hacer política en Medellín. Con la Alcaldía tenemos muchos proyectos. Hay uno en educación básica; hay otro con el sector privado —Empresarios por la educación—, con el que se está desarrollando el programa Pequeños científicos, y tenemos otro proyecto encaminado a tratar de disminuir la desertión de las universidades.

Hay una paradoja. Para la Universidad de Antioquia hay solicitud de cupos de unos 60.000 estudiantes; pero sólo reciben 4.000. En las universidades privadas que hay en la región hay pupitres vacíos. Estamos haciendo un esfuerzo desde el sector privado para que, sin sacrificar la excelencia, que siempre se exigirá a una persona que aspire a ingresar, con la misma calificación que sacó el que hubiera podido entrar como 4.001 a la Universidad de Antioquia pueda entrar a la universidad privada con unos beneficios que le otorgan las becas hechas para tal efecto.

El problema de la desertión es un problema de ingresos, fundamentalmente. Por eso buscamos disminuirla. También nos hemos enfocado en estimular la inversión en investigación, porque es cierto lo que dice Eduardo Posada de que la inversión privada en investigación es muy baja, y lo que se trata de hacer en Antioquia es transferencia del sector privado a la Universidad y a centros de investigación para que ellos le den a la industria, y a las empresas en general, lo que estamos necesitando para competir.

Muchas gracias.
Preguntas

P. Mi nombre es Alejandro Marín. ¿Cómo se quieren hacer inversiones si todo lo estamos vendiendo a transnacionales desconocidas? Vamos a depender económicamente de ellas. Es difícil hacer investigación en Colombia si los investigadores se van para el exterior, que es donde consiguen apoyo. No se puede hacer investigación en el país si no hay inversión en buenos laboratorios. La pregunta está dirigida a la doctora Cecilia López, sobre todo en lo que tiene que ver con la dependencia económica.

Interviene Cecilia López

En este mundo globalizado hay que entender que tenemos que tratar de relacionarnos con el resto. Para tomar el ejemplo de Telecom. Yo me preguntaba por qué no hicimos lo mismo que hizo British Telecom. que entró en una crisis muy parecida y, para recuperarse, vendió acciones a todos los ingleses, se hizo la renovación tecnológica requerida y la empresa salió adelante con el apoyo de todos los ingleses. El problema parte de la debilidad de nuestras empresas y su falta de visión. Hay una anécdota muy interesante sobre el señor Slim. Dicen que le preguntó a Joseph Stiglitz: ¿qué puedo hacer yo por México?; Y Stiglitz le respondió: ¡pague impuestos!.

Una cosa que me preocupa es la pérdida de capital humano que está teniendo el país, no sólo por la subutilización sino por la emigración de cerebros. El país se está medio acomodando contenido con las remesas —que, entre otras cosas, ayudan a reducir el desempleo no porque creen empleo, sino porque la gente recibe las remesas y no busca participar en el mercado laboral—. Ese es un tema sustantivo, porque estamos haciendo un estuercio en formar gente, pero la gente se va y se queda por fuera. Es un problema de mala comprensión de la globalización. Tenemos que hacer alianzas, no nos podemos aislar, pero tienen que ser alianzas en las que ganemos.

Interviene Gerardo Remolina

Yo creo que, efectivamente, somos un país pobre; pero somos pobres porque no tenemos ciencia ni tecnología y no podemos tenerlas porque somos pobres. Es un círculo vicioso que hay que romper por algún lado. Desde luego que es muy fácil decirles a los otros que solucionen el problema, pero es válido pensar seriamente en ver la manera de romper ese círculo. Y a la búsqueda de las soluciones hay que ponerle mucha creatividad e inventiva.
P. María del Rosario Guerra. Mi pregunta es para el doctor Juan Sebastián. En el auditorio hay muchos profesores y estudiantes de Física. Efectivamente, Antioquia ha dado ejemplo de la cercanía entre la universidad y la empresa y de cómo es posible hacer conjuntamente una transformación productiva. Uno de los problemas que yo he identificado es la falta de confianza para generar conocimiento y para transferir ese conocimiento. Desde el sector empresarial, ¿cómo se ve y que se espera para que la variable de mayor confianza y mayor apuesta pueda ser la que motive el uso y la apropiación de esa capacidad nuestra?

Interviene Juan Sebastián Betancourt

Pensemos un poco en la situación de Medellín. Mirado en retrospectiva se podría decir que es absurdo que hubiera un desarrollo industrial en una ciudad como Medellín. ¿Por qué se dio? Seguramente había factores humanos que incidían, porque los factores geográficos no ayudaban mucho. ¿Pudo haber sido por la Escuela de Minas? Pues en esa Escuela, a pesar de la precariedad de la época, se estimuló muchísimas la investigación y el desarrollo de la ingeniería y los costos de la generación de energía, que crearon las Empresas Públicas de Medellín, eran relativamente más bajos que en el resto del país. Después sufriimos un atraso monumental y Antioquia es hoy uno de los departamentos más pobres del país —el Valle de Aburrá es otra cosa—.

Hoy, cuando Antioquia está repensando su vocación industrial, no es posible pensar que ningún inversionista, nacional o extranjero, vaya a poner una empresa como las que tradicionalmente había allí. Lo normal, y es lo que está pasando, es que se vayan hacia la Costa. Eso es lo que nos ha obligado a reforzar esa confianza hacia la universidad. La idea del alcalde de Medellín, que es matemático de profesión, y en la que nos ha comprometido a todos los empresarios antioqueños, es que esto hay que enseñarlo desde la infancia. En Antioquia se está haciendo algo similar a lo que se hizo en Bogotá con Maloca, el Parque Explora, y la idea es que, desde la infancia y en cualquier estrato social, cualquier persona pueda interrelacionarse con la ciencia.

Durante la celebración de la semana Barcelona-Medellín no visitó un físico llamado Jorge Bachgerberg y, además de que nos explicó muchas cosas de la Física, nos mostró cómo se debe manejar un parque de esta naturaleza. Con pompas de jabón, nos mostró cómo se explica el tema de las células y de las presiones atmosféricas. Si logramos hacer esto bien hecho, vamos a lograr que la sociedad entera se apropié de la ciencia. También esperamos que, con el apoyo de la universidad, la empresa encuentre su nueva vocación industrial en esa región.
P. Emiliano Olaya. La pregunta va dirigida a la doctora Cecilia López. ¿Cómo concibe usted una reforma a la educación que tenga como objetivo la formación de investigadores y la inversión en ciencia y tecnología desde la escuela?

Interviene Cecilia López

A mí me tiene muy preocupada el tema de la educación, y una de las cosas que me gustaría que hiciera la Fundación Agenda Colombia es tocar el tema de educación y desarrollo. Porque a veces se le atribuyen a la educación, con mucha facilidad, unos poderes de reforma muy rápidos, sabiendo que, si no se resuelven los problemas de la pobreza y la miseria, no hay posibilidad de educar a la gente. Juan Carlos Tedesco lo expuso muy claramente. Decía: «economistas, ocúpense ustedes del tema que les compete, que es que la economía crezca y sea incluyente, reduzcan la pobreza y dejennos el tema de la educación a los educadores».

Obviamente, el país tiene que seguir haciendo un esfuerzo grande por mejorar el sistema educativo en general, pero hay que focalizar en preescolar, en educación media y en universitaria. La política nacional en educación está cruda, en parte porque no cumplimos las metas de cobertura; pero, además, no se le presta suficiente atención al tema de la educación desde el preescolar, pero dotando los colegios con infraestructura, con buenos maestros, con laboratorios adecuados, con buenas herramientas para educar. Con el afán de la cobertura, vemos niños recibiendo clases sentados en el piso.

Pensando en el corto plazo, yo hablo del ‘shock’ educativo que consiste en un acercamiento de todos los niveles educativos a la sociedad del conocimiento. Hay que hacer un acercamiento a la demanda, siempre y cuando en la demanda haya un salto tecnológico importante. No debe haber muchos requerimientos en la industria, pues se nos están yendo los cerebros en Física, en Química, en Matemáticas y en tantas otras áreas. Sin olvidar lo que es tradicional, y haciendo énfasis en preescolar, deberíamos hacer un esfuerzo grande en educación media y superior para poder entrar a generar la dinámica para hacer transformaciones importantes.

Interviene Gerardo Remolina

Todos estos elementos a los que se ha hecho alusión son muy importantes y hay que tenerlos en cuenta. Sin embargo, yo quisiera traer a colación el aporte hecho por la mesa de trabajo que estamos haciendo con ASCÚN y el Ministerio de Educación.
Uno de los temas que ha aflorado es que Colombia no tiene un sistema de educación, es decir, el país no tiene claro hacia dónde le está apuntando. No sabemos qué relación tiene el preescolar con la primaria o ésta con la secundaria y ésta con la universitaria. Incluso, dentro de las mismas universidades, no es clara la relación entre pregrados y posgrados. Hace falta un sistema integrado y coordinado que trate de relacionar de manera orgánica cada uno de estos momentos de la educación.

Interviene Rafael Gutiérrez

Se ha repetido varias veces que hay mucha preocupación por los cerebros que se han fugado. Yo no estoy tan de acuerdo. Tenemos una enorme inversión en nuestros profesionales que se han ido al exterior a formarse mejor, a adquirir mucha experiencia, y ya vendrá el día —y eso depende de nosotros— en el que podamos recuperarlos.

P. José Daniel Muñoz, del Departamento de Física de la Universidad Nacional. La pregunta la dirijo al doctor Betancourt. A mí me gustaría proponer una solución. Estoy de acuerdo con la doctora Cecilia López en que la única forma de salir del subdesarrollo es generar trabajo, y trabajo digno, para que la riqueza sea repartida de la mejor forma posible. Esto significa hacer nuevas empresas y nuevos productos. De acuerdo con lo que mostró el doctor Posada, en Colombia los nuevos productos se desarrollan en las universidades. Eso significa que hay que crear becas para las universidades. Pero además de dar becas, las empresas podrían dar un premio para quien desarrolle un producto nuevo, el que le proponga la empresa. Y si ese producto es exitoso, que le reduzcan a la empresa los impuestos cuando el producto esté dando resultados. Es un premio a la innovación. Un problema que tenemos los investigadores es que nuestra única fuente de financiación es Colciencias; hay unas dos o tres adicionales —como la Fundación Mazda—, pero no son suficientes. La pregunta para el doctor Betancourt es: ¿qué tan factible ve realizar estos concursos y estas fundaciones? Para la doctora Cecilia López es: ¿qué tan factible ve que se pueda hacer un descuento en impuestos para compensar o gratificar a esas empresas que sean exitosas en la provisión de un nuevo producto?

Interviene Juan Sebastián Betancourt

Digamos que eso ya se está haciendo, aunque todavía muy incipientemente. Muchas universidades —y hablo de mi región, porque debe haber cosas similares y hasta mejores en otras regiones— premian a los investigadores. Qué se ha encontrado: que cuando se contrasta la invención con la realidad del mercado, no funciona, y eso le pro-
duce mucha desilusión al investigador. Lo que estamos tratando de hacer para corregir eso es meternos de lleno en la universidad, para que conjuntamente se determine qué es lo que se demanda y cómo se puede responder a esa demanda de la industria.

¿Qué estamos haciendo adicionalmente en nuestra región? Fortalecer las relaciones entre las grandes empresas, públicas y privadas, y sus proveedores, que generalmente son pequeños y medianos empresarios, para transferir la tecnología que estas grandes empresas tienen, para que los pequeños y medianos empresarios accedan a mejores prácticas y que entre los dos puedan innovar. Eso ha dado resultados.

Interviene Cecilia López

Primero, un comentario a lo que acaba de plantear Juan Sebastián Betancourt. En lo único en lo que están de acuerdo hoy los economistas, ortodoxos y no ortodoxos, es en que una de las fallas de los noventa fue haber olvidado al sector productivo y pensar que con la sola política macroeconómica, la microeconomía iba a reaccionar. Por eso, un paso importante es reconocer que sin una política dirigida al sector productivo, sobre todo al industrial y al rural, como mecanismo de distribución de ingreso, no se puede avanzar. Se reconoce que tiene que haber una institucionalidad para favorecer esos procesos y por eso se está volviendo a hablar de los bancos de desarrollo.

Eso se une al papel de la política fiscal. Obviamente, una de las funciones del Estado es estimular la producción. Hay que cambiar este modelo que hemos venido aplicando del sector productivo rentista. ¿Cuánta plata le invirtió el país a Avianca? Cuando el sector privado deje de ser rentista y se vuelva socio, para que pierda y gane con los negocios del país, se justificará usar la política fiscal en ese sentido. La base de la política fiscal es la progresividad: debe ser progresiva en la consecución de recursos fiscales —o sea, que pague más impuestos el que más tiene— y debe ser progresiva en el gasto —darle a los que lo necesitan, y eso no necesariamente significa darle únicamente a los pobres—.

Interviene Eduardo Posada

Yo quiero agregar algo, que me preocupa, y es sobre la carencia de sistemas de riesgo en Colombia; los colombianos no arriesgamos nada. Pensamos mucho las cosas, para concluir que nos pueden hacer mucho daño. Tenemos que implementar esa cultura de riesgo y, por consiguiente, crear fondos de capital de riesgo.
P. Álvaro Buendía. La pregunta es para el padre Gerardo Remolina. ¿Usted ve alguna posibilidad de que redefinamos el contrato universitario? Lo digo en el sentido de que un padre de familia, cuando paga la matrícula, no obtiene como resultado que gradúan a su hijo, sino que lo botan por un trampolin y no se sabe si la piscina está vacía. El compromiso de la universidad es que la persona tenga una posibilidad de continuar.

Interviene Gerardo Remolina

Usted toca un tema muy importante que todas las universidades hemos considerado. En este momento no se aprueba ningún nuevo programa, de pregrado o de posgrado, mientras no se haya estudiado a fondo la pertinencia. Con esos programas se pretende responder a una necesidad real del país. Tampoco se aprueba un programa mientras no se haya hecho un estudio de factibilidad viendo las necesidades del mercado y las posibilidades que ofrecen otras instituciones de educación superior.

La finalidad de la universidad es formar, y no es propiamente buscar lugares de trabajo para sus estudiantes. En este punto también hay que dar un vuelco importante porque la universidad no puede estar pendiente del trabajo que vaya a encontrar su egresado, sino de la capacidad de generar empleo que él pueda tener. Por eso es por lo que estamos atendiendo el emprendimiento que puedan tener nuestros estudiantes. Más aún, no sólo debemos estar atentos a que nuestros egresados salgan con la capacidad de emprender nuevas cosas, nuevos trabajos e industrias, sino que la universidad misma tenga esa mentalidad emprendedora.

Por otra parte, el Observatorio Laboral que está implementando el gobierno con todas las universidades va a ser también algo muy positivo en este aspecto. Es un observatorio que le dará a las universidades una retroalimentación sobre cómo están procediendo en el campo laboral los egresados.

Interviene Juan Sebastián Betancourt

Si se va uno al sector empresarial, público o privado, encuentra muchos profesionales, incluso con posgrado, que están haciendo labores de tecnólogos; ahí hay un desperdicio enorme. En la Medicina creo que no existe la carrera de paramédicos. Es un problema de todos el valorar que tener en la sociedad técnicos de una actividad como tener un profesional. Hay una responsabilidad del Estado, porque se están aprobando
universidades a diestra y siniestra y salen muchos profesionales, algunos de ellos ofreciéndose muy baratos, y con eso le hacemos un daño muy grande a la sociedad y a la industria.

P. Ricardo Alonso Medina. La reflexión no va dirigida a ninguno de los panelistas en particular. En todo lo que se ha dicho es obvio que el aporte de la ciencia va ligado al problema económico y social del país. Realmente, como dijo el padre Remolina, estamos en un círculo vicioso: somos pobres, no hay recursos para la ciencia y la educación y a la vez la gente no se está educando y no está generando recursos suficientes. Hay países que han salido adelante con políticas que se salen de los paradigmas económicos preestablecidos, como hizo Franklin D. Roosevelt en Estados Unidos. Colombia destina muchos recursos al pago de la deuda externa y si nos endeudamos más para pagar intereses de la deuda siempre tendremos escasos recursos para invertir internamente.

Interviene Cecilia López

Un gran pecado que está cometiendo la sociedad contemporánea, sobre todo desde el punto de vista económico, es que, gracias a la existencia de un mercado global, se mira el salario como un costo. Eso está haciéndole mucho daño a sociedades como la nuestra, porque todo se justifica en aras de bajar el costo y no se ve que el salario es construcción de demanda interna, pero construir capital humano no es importante. Todas las políticas laborales van a bajar el costo del salario. El problema es volver a replantear el salario como lo que es, como la retribución a un factor de producción que se llama trabajo y en la medida en que se eduque, se forme capital, esas personas tienen que tener los valores que les corresponden y que ese salario genere una dinámica económica positiva.

P. Diógenes Campos. Yo tengo la sensación de que muchos de estos foros se enfocan hacia las experiencias individuales desde los diferentes sectores, el académico, el de la industria, el sector estatal. Si no pensáramos solamente en lo puntual, en lo específico, sino en lo global, en el país como un todo, ¿cuáles serían los grandes propósitos que como sociedad deberíamos definir? ¿Qué papel, dentro de esa jerarquía de propósitos, tendrían la ciencia y la tecnología?
Interviene Juan Sebastián Betancourt

Sin caer en la trampa de hacer un programa de gobierno, yo creo que lo prioritario es la educación en toda su extensión, hasta la investigación. O sea que el pilar de cualquier estrategia de desarrollo tiene que ser la educación. Digamos que el país tiene una cantidad X de subsidios para otorgar. Y, dados los problemas que tiene una sociedad como la colombiana, hay unos subsidios de tipo asistencial propiamente dicho, pero hay otros subsidios en los que hay poner mucho cuidado. Como lo anoté en mi primera intervención, hay que ver cómo se otorgan los beneficios tributarios. Ahí hay un porcentaje importante para que el Estado, haciendo un buen uso de esa discrecionalidad que tiene con el Congreso, diga ‘vamos a fortalecer y a privilegiar la educación y la investigación’.

Interviene Cecilia López

Lo que no tiene este país es un sueño, no el sueño de las elites, sino un sueño con el que todos los colombianos se sientan identificados, un sueño que se construya colectivamente. Colombia está tan segmentada que hasta en ese sueño está dividida. Cuando se logre construir ese sueño y dinamizarlo, podremos salir adelante. Por ejemplo, es posible que a la gente no le interese tanto eso del crecimiento económico, sino que más bien le interese la solidaridad. Hay que crear diferentes mecanismos para identificar ese sueño. Una vez identificado el sueño, hay que reivindicar la política, que está muy despresigiada, porque sin poder político no se puede cumplir ese sueño.

Queremos una sociedad insertada en un mundo global y que en ese proceso vaya incluyendo gente; no la idea de que primero crecemos y luego somos incluyentes. Que ese proceso lo hagamos de manera tan civilista que logremos alcanzar la paz. Así llegamos a los pilares fundamentales: necesitamos construir capital humano, necesitamos construir capital social para todos, necesitamos construir solidaridad, para potenciar las cualidades que tenemos, porque este es un pueblo muy trabajador y muy inteligente.

Interviene Gerardo Remolina

Mis antecesores ya han aclarado bastante el panorama para responder a la pregunta. Estoy totalmente de acuerdo con ellos, pero quisiera hacer dos énfasis. Uno, en lo que se refiere a la educación. Es prioritario para el país tener un sistema integrado de
educación, desde el preescolar hasta la educación universitaria, con un objetivo claro, que le apunte a algo que queremos lograr: buscar el desarrollo sostenible del país. El otro énfasis es que si es necesario hacer un esfuerzo particularmente especial desde el punto de vista económico para poder hacer viable ese sistema educativo integrado, de manera que podamos romper ese círculo vicioso al que me refería antes.

Interviene Eduardo Posada

Ante todo, quiero disculpar al doctor Rafael Mejía, quien debió ausentarse por un compromiso que tenía en Palacio. Para terminar, quiero agradecerle a Colciencias el que me haya invitado a participar en este panel, que considero que ha sido muy enriquecedor y muy valioso. Lo importante es que todo esto se ponga en práctica. A menudo es fácil prometer, como pasó con el Pacto de Competitividad, pero lo difícil es cumplir. Les reitero el agradecimiento a todos los panelistas y a ustedes por habernos acompañado.
Mesa redonda II

Moderador:
Rafael Hurtado. Director del Departamento de Física de la Universidad Nacional de Colombia.

Participantes:
Javier Botero
Viceministro de Educación Superior.

Luis Enrique Arango
Rector de la Universidad Tecnológica de Pereira.

Carlos Angulo Galvis
Rector de la Universidad de los Andes.

Alfredo Hoyos
Presidente de Frisby.

Interviene Rafael Hurtado

Entendemos nuestros fines de crecimiento y desarrollo como relacionados con un bienestar social asociado a un estilo de vida y en un contexto de globalización. Nos podemos diferenciar de otras sociedades, pero tenemos que estar cerca de ellas. Natu-
ralmente, estos temas están en la mesa porque la investigación científica, y en particular la que realizan los físicos en muchas áreas, es motor de creatividad, de organización de nuestra sociedad. En ese escenario, quisiera comenzar preguntándole al señor viceministro de Educación Superior qué está pasando con los procesos de educación, cómo va la ciencia en estos procesos y si la investigación va de la mano de estos procesos.

Interviene Javier Botero

En primer lugar, quiero agradecer a Colciencias esta invitación a participar en esta importante reunión con ocasión de la celebración del Año Mundial de la Física. Yo, como ingeniero y como físico que ha hecho investigación durante casi todo el tiempo, tengo una posición muy clara al respecto y he tratado de hacerla sentir en toda la política de investigación superior en el Ministerio. Para el Ministerio de Educación es muy grato el que este Año Mundial de la Física coincida también con la iniciativa de considerar el año 2005 como el Año Nacional de las Competencias Científicas. Son competencias científicas en general, tanto las relacionadas con las ciencias naturales como con las ciencias sociales.

Las competencias científicas son la forma de entender la naturaleza, y en eso la Física desempeña un papel preponderante. En buena parte, la Física es el origen de esa búsqueda de conocimiento y del entendimiento de las leyes de la naturaleza. En el marco de este año de las competencias científicas, se han venido realizando, a nivel regional primero, unos foros en los cuales los niños y los maestros tienen la oportunidad de presentar sus proyectos en ciencias. Estos foros regionales se recogerán en un gran evento, el Foro Nacional de Competencias Científicas en educación básica y media y en un foro universitario que se realizará en Medellín alrededor del mismo tema, es decir, cómo se desarrolla esa competencia científica en la educación superior, destacando así que hay una serie de competencias transversales que tienen que ver con la capacidad de una persona de interpretar, de formular hipótesis, de generar teorías, etc.

En estos últimos años hemos casi triplicado el número de estudiantes doctorales en Colombia; todavía es muy bajo, pero estamos llegando a los 1.000. El número de programas también ha aumentado, y se han fortalecido los programas existentes. Muchos de estos programas son programas en ciencias y hay varios en el área de la Física. La importancia del desarrollo de la ciencia y de la investigación es incuestionable en cuanto al aporte a una sociedad. Hoy en día son muy pocos los procesos, hechos y actos que no sean producto de investigaciones y del desarrollo tecnológico. Estoy convencido
de que para lograr los niveles de bienestar social y de desarrollo que requiere el país es indispensable mejorar la calidad de la formación en ciencias y la cantidad de recursos y la calidad de la investigación en ciencias.

Interviene Rafael Hurtado

La Universidad de los Andes siempre ha tenido una gran tradición en investigación y tiene grupos de investigadores en muchas áreas del conocimiento; además, tiene un Departamento de Física reconocido a nivel nacional e internacional. Dentro de la Universidad, ¿cuál ha sido la función que ha cumplido la Física y qué expectativas tienen o cuáles podrían ser los sueños que podría tener una universidad como la Universidad de los Andes sobre la Física?

Interviene Carlos Angulo

Mil gracias por la invitación. No soy experto en Física, como lo es el Viceministro. Algo estudié cuando me formé como ingeniero. En la Universidad de los Andes hay que partir de la base de que creemos en una formación interdisciplinaria para todos nuestros profesionales. Actualmente, el país y el mundo necesitan profesionales adaptables, en todas las disciplinas. En ese sentido, las ciencias, y la Física específicamente, desempeñan un papel fundamental. La organización que tenemos en la Universidad comprende un Departamento de Física, pequeño –160 estudiantes–, pero de alta calidad. Hay un departamento paralelo de Servicio, en el cual se ofrece la Física a toda la Universidad, y promovemos la enseñanza de la Física para todas las disciplinas porque la juzgamos fundamental.

La Física permite experimentar, analizar, sintetizar, y en cualquier disciplina estas características son fundamentales. La otra función que estamos cumpliendo es formar un número, todavía muy reducido, desafortunadamente, de Físicos de muy buena calidad –y aquí hay un excelente ejemplo, Ana María Rey– que van a hacer programas de posgrado al exterior. El gran sueño sería que esos profesionales regresaran algún día a Colombia a trabajar con nosotros y a contribuir al desarrollo del país. Tenemos que lograr que un país como Colombia continúe trabajando con laboratorios y universidades de otros países, con lo que estamos aportando, de alguna manera, al conocimiento mundial.
En la Universidad tuvimos una discusión hace unos días sobre el programa de desarrollo de los próximos años. Algo fundamental, y que no admite discusión alguna, es el papel de las ciencias en todas las disciplinas que se enseñan en la Universidad. Hoy, con un concepto cruzado, de interdisciplina, tenemos un físico que nos visita periódicamente, Nick Johnson, de la Universidad de Oxford, que ha desarrollado unos modelos que uno piensa que son rarísimos para un físico: en uno trata de explicar cómo se entregan los premios a la mejor canción en el festival europeo y el otro, que tiene más aplicación para Colombia, es un modelo del comportamiento del conflicto o guerra civil. Explica, con este modelo, cuáles situaciones obedecen a conflicto y cuáles a guerra civil.

Interviene Rafael Hurtado

Quiero retomar el ejemplo del profesor Nick Johnson, que precisamente trabaja en materia condensada. No sé qué hace en los ratos libres, pues es altamente productivo en los dos campos, y trabaja también en econofísica. Quiero resaltar el papel que está desempeñando la Física en otras disciplinas y tal vez lo que debe preocuparnos como país es la falta de un desarrollo de teorías, modelos, conceptos propios sobre la sociedad, donde hay una diferenciación de otros escenarios, en particular de generación de conocimiento. Me gustaría que el profesor Kümmel nos acompañara y nos hablara un poco sobre su experiencia en esto de la interdisciplinariedad. ¿Han sido aceptadas sus teorías? ¿Cuál ha sido el ambiente académico y no académico frente a su trabajo?

Interviene Reiner Kümmel

Es una pregunta muy interesante. Empecé con estos estudios un poco después de regresar de Colombia a Alemania porque entendi por primera vez la termodinámica cuando mis colegas en la Universidad del Valle me solicitaron dictar la termodinámica a los estudiantes. Como estudiante, odiaba la termodinámica y todas sus diferenciales, parciales, etc., y realmente no la entendí. Cuando me hicieron enseñarla, la entendí por primera vez. Entendi lo que significan las dos primeras leyes de la termodinámica y había venido a Colombia a contribuir al desarrollo de la Física, para que la Física pueda contribuir al desarrollo industrial.

En 1972 publicaron el libro Los límites al crecimiento. Después de haber entendido la termodinámica entendi que, básicamente, el libro tiene razón. Entendi que no
todos los países pueden desarrollarse como Alemania y Estados Unidos; cuando todos lo hagan así vamos a destruir la tierra debido a las emisiones. Cuando volví a Alemania empecé a preocuparme del tema de la economía y hablé con economistas que también estaban interesados en los países en vías de desarrollo. En esta interacción entendí, por primera vez, que la economía no toma en cuenta la energía como factor de producción y ¡no podía creerlo! Todos los físicos sabemos que la energía es lo que mueve al mundo, que sin energía no pasa nada.

Empecé a estudiar los libros de economía y empecé a aprender cómo piensan los economistas y entré en diálogo con algunos de ellos que también habían entendido la Física. Durante una interacción de veinticinco años con varios economistas desarrollé estas teorías. Y como se ha hablado mucho de la investigación interdisciplinaría tengo que decirles que es muy importante, pero también es muy peligroso, porque uno puede caer muy fácilmente en los muchos huecos de competencia que existen en otro campo. Cuando uno, como físico, entra en la economía, es muy fácil cometer muchos errores terribles. Conozco muchos ejemplos de teorías económicas erróneas que sólo toman la energía y olvidan los otros factores. Entonces, hay que cuidarse mucho y estar dispuestos a cooperar con muchas personas. Yo he tenido la suerte de que muchos economistas, muy buenos, cooperaron conmigo.

Publicamos estos estudios en revistas de economía y a los jueces les daba mucha dificultad entenderlos, pero finalmente lo hicieron. Los economistas neoclásicos, en cambio, no quieren entenderlo. Son posiciones ideológicas que a veces impiden que las cosas avancen. Hay mucha resistencia entre los economistas a aceptar esa intromisión de los físicos en su área de competencia. El joven que trabajó conmigo haciendo su tesis de doctorado en economía, y que desarrolló los modelos que les mostré, regresó a Colonia a trabajar y presentó su tesis para ser Profesor basado en estos modelos. Entre los jurados de la tesis había un economista muy viejo, que no quiso aceptar las teorías y demoró dos años el grado de Profesor del joven. Otros economistas, más jóvenes, sí lo apoyaron. Yo he necesitado treinta años, y apenas ahora las cosas se están difundiendo.

Los físicos alemanes encuentran trabajo en cualquier industria o empresa alemana porque en las empresas saben que los físicos pueden resolver cualquier tipo de problema, sin importar el área en la que trabajen, y fácilmente se adaptan a nuevos problemas para resolverlos. Ojalá podamos mantener esa formación; ahora estamos en peligro porque existe la presión de reducir el número de cursos que se dictan en la universidad para acelerar los estudios de los jóvenes. Eso es un problema serio para Alemania. Yo espero que en Colombia sigan avanzando en las áreas que empezaron en la Universidad Nacional o en la Universidad del Valle haciendo Física, pero Física con los ojos y los oídos abiertos a los demás problemas de la sociedad.
Interviene Rafael Hurtado

Doctor Arango, rector de la Universidad Tecnológica de Pereira. El profesor Küm- mel decía que si todos fuéramos como Alemania o como Estados Unidos, no podríamos existir en el planeta. La Universidad Tecnológica de Pereira ha tenido un papel muy importante en el desarrollo regional y ha mantenido un liderazgo en diferentes iniciativas, muchas de interés social, pero de todas formas ha seguido trabajando en lo que nosotros llamamos investigación fundamental, en cosmología, en gravitación. La pregunta es ¿cómo es la relación de las regiones, y en este caso una región muy importante para el país, con la universidad y con los científicos?

Interviene Luis Enrique Arango

Déjeme confesarle, en primer lugar, que pensé que el formato del panel era diferente y había traído un escrito consignando algunas ideas, desde el único ángulo desde el que yo puedo hablar, que es el de la educación y como directivo universitario. Coincidió con el padre Gerardo Remolina, quien esta mañana señaló que nadie duda de la importancia de Física, y de la ciencia básica en general, como un fundamento esencial para el desarrollo de la sociedad y para el bienestar de la humanidad. Pero esa certeza no hace relación con lo que siente la gente del común en relación con el estudio de las ciencias.

Nosotros vemos, desde la educación, el desafecto que tiene la sociedad por el estudio de las ciencias básicas, y de la Física, muy especialmente, porque las ven aburridas, difíciles, innecesarias. Lo que decía el doctor Kümml sobre lo que sintió cuando estudió por primera vez la termodinámica les sucede, en general, a todas las personas cuando se tienen que aproximar al estudio de la ciencia básica. Este es un problema que va más allá de los países en vías de desarrollo; es un problema mundial y general y es la incapacidad de encontrar una pedagogía que haga amigable el estudio de la Física y de la ciencia básica, para que la población se apropie de ellas. Eso llevaría a un reconocimiento de la importancia que tendría una correspondencia con la dedicación que le impongan al estudio de esas ciencias.

Uno ve cómo los resultados que tienen los estudiantes en los exámenes de evaluación que se hacen en las universidades son muy pobres y deficientes en la ciencia básica. Si uno mira los resultados de las pruebas SABER que hace el sistema educativo a los estudiantes de grado noveno o décimo encuentra que los resultados en ciencia básica y en física son muy precarios. Las pruebas del ICFES arrojan resultados muy similares. Y no
hay un resultado diferente en las universidades. El estudio de la Física y de las ciencias básicas en las universidades arroja unos resultados muy cuestionables. Las evaluaciones, por lo general, tienen resultados malos y los índices de repetencia son muy elevados. Ese tipo de disciplinas que se asocian a las ciencias básicas terminan siendo un freno para que la gente pueda estudiar o un filtro y pueden ser las causantes de que muchas personas decidan no continuar sus estudios.

Obviamente, esto también tiene su repercusión en el número de personas que busca estudiar en las universidades Física o cualquier ciencia básica. La demanda es muy baja, los programas académicos que se ofrecen apenas sobreviven por falta de estudiantes; los posgrados que se ofrecen en ciencia básica también son muy pocos en el país, precisamente por la falta de demanda.

Desde el punto de vista de la educación se requiere propiciar una gran movilización para encontrar nuevas metodologías que nos permitan hacer del estudio de la Física y de la ciencia básica algo más agradable, algo que se conecte más con la sociedad, que no sea tan distante. Se han hecho esfuerzos y esta mañana se ponía el ejemplo de Maloca. Ojalá todos los municipios de Colombia pudieran tener ‘malocas’ similares que permitieran recrear a los niños y a los jóvenes en estas disciplinas. Probablemente se puedan dar acciones más envolventes que comprometan más a la sociedad intentando estimular el estudio de las ciencias, prácticamente desde la cuna.

La televisión, que está en todos los ámbitos, y que de alguna manera está formando, o deformando, o aformando, debería tener un papel muy fuerte alrededor de la ciencia básica y sobre la sociedad, que se pudiera inducir desde edades tempranas un apego hacia el estudio de este tipo de disciplinas que son tan fundamentales y que cooperan para el desenvolvimiento de los seres humanos porque ayudan a razonar y a analizar; son verdaderas fuentes para formar ciudadanos. Como país en vías de desarrollo, o como país del sur, nos toca ir incluso más rápido que los países desarrollados. Nosotros necesitamos ser más creativos.

Como decía el profesor Giaever, no se requieren grandes descubrimientos; se requiere mucha creatividad, mucha invención, apoyándose en el conocimiento de la ciencia que ya está disponible. Necesitamos acercar la sociedad al estudio de las ciencias y para eso necesitamos estimular cambios profundos en lo pedagógico y en los sistemas de comunicación que inciden sobre la población, para que estas disciplinas sean más deseables para la sociedad.
Interviene Rafael Hurtado

Realmente sus planteamientos están muy en la línea de lo que es una gran necesidad de este año para los físicos y es entender los llamados de la sociedad y cuáles son los demás actores de la sociedad que deben estar comprometidos en responder. Sabemos que nuestra voluntad como científicos es importante, pero no es todo lo que se requiere para poder avanzar en diferentes temáticas y el tema de la educación ciertamente es muy importante. Es común encontrarse con estudiantes que estudian Física porque tuvieron en el colegio un muy buen profesor de Física.

También hablaba del contacto con la sociedad. Quiero preguntarle al doctor Hoyos, presidente de Frisby, como empresario. Antes quisiera agradecerle su presencia, pues por lo general los científicos y los empresarios no solemos encontrarnos mucho, y menos los Físicos, que no solemos tener capacidad de convocatoria ni solemos tener buena respuesta a nuestras invitaciones.

Hago el comentario porque hace unos meses invitamos a 125 empresarios a un pequeño evento, que terminó siendo realmente muy pequeño, pues sólo llegaron nueve de los 125 industriales. Sin embargo, realmente para nosotros fue un evento muy grande, porque de esos nueve empresarios tres sellaron compromisos de colaboración con nosotros. Mi pregunta va en dos direcciones ¿cómo nos perciben los empresarios a nosotros como comunidad? ¿Les somos interesantes? ¿Somos de valor para ustedes? ¿Qué esperan de nosotros y cómo podemos tender puentes de intereses comunes?

Interviene Alfredo Hoyos

Realmente resulta extraño que haya un empresario en esta mesa. Cuando me invitaron estuve bastante sorprendido, pero ahora veo que hay un buen ambiente para hablar de qué tiene que ver una empresa y qué tiene que ver la sociedad con la Física. Yo he estado estudiando mucho en los últimos tiempos el tema de la aplicación de la Física en la sociedad y en la empresa. El problema con la Física es que la han mantenido muy elevada y a nivel de los que entiendan las ecuaciones matemáticas y esas cosas. Si se le baja de nivel y se le buscan las aplicaciones en la sociedad, resulta que se encuentran una cantidad de aplicaciones impresionantes.

Estuve con Peter Senger el año pasado, quien me invitó a un foro en Vermont, en el que se buscaba cómo mejorar la parte humana en las organizaciones. Había representantes de todas las multinacionales. Allí él empezó a hablar de la resonancia mórifica, del orden implicado, y así sucesivamente, con esas terminologías un poco elevadas. Yo
le dije que tanto en las empresas como en la ciencia les da tanto trabajo usar el lenguaje común y tienen que usar esos nombres tan complicados.

Debemos bajarle el nivel a eso y crear niveles afectivos con la gente, crear confianza, retomar una cantidad de cosas muy importantes, que son la Física puesta en acción, en forma sencilla, en las empresas y en la sociedad. Incluso me llamó la atención que Senger me dijera que su gran maestro en la vida es el profesor Humberto Maturana; desde entonces trato de ir a reunirme con él lo más frecuentemente que me sea posible. A través de él conoci a Rolando Toro, que creó la educación biocéntrica, una de las ciencias emergentes más importantes hoy en día y que se basa en un proceso sistémico que tiene mucho que ver con la Física. Él ha sacado mucho material de la física para crear este proceso sistémico que se llama Biodanza, para crear redes afectivas, para generar confianza, para que la gente vuelva a quererse, a vivir en sociedad, a superar sus neurosis defendiendo la vida. Yo he discutido esto con el doctor Luis Enrique y hoy hay alumnos de la Universidad Tecnológica haciendo estudios y especializaciones en este campo.

Si se le baja a la Física de su pedestal y se incorporan a la vida cotidiana las cosas prácticas, puede ser mucho más amable para la gente común y corriente. Y sobre todo para mostrar que hay procesos y vivencias que pueden ser vividos a través del cuerpo y no sólo desde la cabeza; con la integración del cuerpo y la cabeza, el ser humano vuelve a recuperar sus instintos y a sentirse mejor consigo mismo, para que no pase lo que lei en un graffiti en Chile que decía: «mi sueño era conseguir empleo; ahora que lo tengo, no tengo tiempo para soñar». ¿Qué clase de vida es la que estamos viviendo si tenemos estas premisas, porque se nos olvidó vivir por estar pensando en conseguir plata.

Interviene Rafael Hurtado

Doctor Hoyos, muchas gracias por sus reflexiones. Y gracias por recordarnos el mundo del profesor Maturana, el mundo de cómo se construyen nuestras sociedades y gracias por la invitación a que retomemos la parte espiritual, que a veces perdemos por estar inmersos en la cotidianidad. Quiero cerrar esta parte con una pregunta para el doctor Botero. ¿Qué nos piden el Ministerio y el Gobierno a los físicos? ¿Qué necesitan de nosotros o cómo podemos apoyar? Sabemos que tenemos gente muy buena en el área de materiales para trabajar con la industria, sabemos que tenemos gente en otras áreas, como en la óptica o en la Física nuclear.
Interviene Javier Botero

Como en todo, lo que saca a un país adelante es hacer bien lo que se hace. Los físicos, y los científicos en general, tienen mucho que aportarle al país, y más aún si también son educadores. Mi mensaje es que lo que hagamos lo hagamos bien, pensando siempre en un bien común. Ojalá fuera cierto eso que planteaba el doctor Hoyos de que la Física tiene todas las respuestas, tiene muchas, pero tiene otras que no están al alcance ni de la Física ni de otras disciplinas. Mi invitación, pues, es a hacer aportes, tanto desde la investigación como desde la formación.

Interviene Rafael Hurtado

Aquí hay varios empresarios; no los conozco a todos, pero hay un científico, Ívar Giaever, que nos reveló hace poco que está en el sector empresarial desde hace unos años. Él trabajó el tema de materia condensada, es decir, en materiales, y sus descubrimientos estuvieron asociados a fenómenos cuánticos muy importantes. Y ahora está trabajando en biofísica, o sea que no está hoy aquí sólo como empresario.

Interviene Alfredo Hoyos

También es importante anotar que estos sistemas de la Biodanza ya los estamos utilizando en la empresa, con los empleados y con un colegio que tenemos en el municipio de Dosquebradas.

* Preguntas

P. Jorge Ramírez. Mi pregunta va dirigida al doctor Botero. En la Universidad Pedagógica Nacional tuvimos una experiencia de participar en un programa de formación de docentes con el Distrito. Uno de los problemas que vimos es la concepción que tienen los estudiantes acerca del profesor de Física. Y encontramos que la dotación de laboratorios es un poco escasa. Yo creo que una forma de acercar a los estudiantes a la Física es apostarle a lo experimental, y si no hay laboratorios no se puede. ¿Cómo se puede afrontar esa problemática, pues parece que todo se reduce a un problema de recursos para los colegios públicos?
Interviene Javier Botero

Coincido con su planteamiento. La dotación es uno de los problemas más costosos y complejos de la Física; por otro lado, ve uno experiencias muy bonitas en las que con muy poco se hace mucho. Hay que buscar en las dos direcciones. La Secretaría de Educación de Bogotá tiene unos recursos importantes, pero es muy amplia el área que debe cubrir. Este año de la calidad de las competencias va ayudar para que se reconozca la importancia que realmente tiene la formación de capital humano.

Interviene Carlos Angulo

Yo quería compartir una experiencia que estamos teniendo en la Universidad y que ya la hemos llevado a varias ciudades. Es un programa de pequeños científicos, en los cuales, como decía el doctor Botero, con muy poco se hace mucho. Hasta la fecha, hemos desarrollado el programa para la enseñanza de las ciencias en primaria y estamos trabajando ya en secundaria. Los laboratorios son tan sencillos como un vaso, unas frutas, unas baterías, con los cuales los niños aprenden experimentando. Es un programa desarrollado por dos físicos distinguidísimos: León Lederman y George Park, quienes han desarrollado materiales sencillos y baratos que estamos usando en muchos colegios del Distrito.

P. William Herrera. La pregunta va dirigida al profesor Kümmler y al señor viceministro. El profesor Kümmler comentó que Alemania ha tenido tendencia a reducir el tiempo en la formación de los profesionales y en Colombia, y en la Universidad Nacional, por ejemplo en las ingenierías, también están disminuyendo. La pregunta es ¿esto también implica una disminución de la calidad de la formación, sobre todo en ciencias básicas?

Interviene Reiner Kümmler

En Alemania los físicos estamos luchando mucho contra el intento de los políticos de reducir el número de años que se requieren para lograr la formación. El problema es que el Estado tiene menos recursos porque el desempleo ha crecido y la mayoría de los ingresos del Estado proviene de los impuestos que pagan los empleados. Además, han disminuido los impuestos a las grandes empresas. La presión es por razones económicas, pero estamos luchando fuertemente contra esa presión.
En esta lucha tenemos un aliado muy importante, los empresarios, porque ellos saben que cuando se reduce el tiempo que se requiere para hacer la tesis de diploma, cuando ya no sea un año, como es ahora, los empresarios van a empezar a pedir el doctorado antes de emplear físicos. Porque ellos requieren personas bien entrenadas en resolver problemas. No estamos bajando el nivel de la educación y estamos luchando contra la presión económica de bajarla, y ojalá que ganemos.

Interviene Javier Botero

Como en todo, hay que buscar estados de equilibrio. Yo lo expresado muchas veces; desde el Gobierno central no hay ningún lineamiento que vaya dirigido hacia la disminución del número de años. Lo que hemos exigido es que las carreras se formulen en créditos académicos buscando más la movilidad. Un título de pregrado en Física y en las Ingenierías es absolutamente insuficiente, y eso va a ser evidente en muchas otras carreras. Hoy en día en Física, para hacer investigación, no basta con el solo pregrado. Lo que se busca es que haya una mayor continuidad entre el pregrado y otros títulos, como posgrados y doctorados. Además, hemos pedido a las universidades que analicen sus carreras, porque la formación enciclopédica no es lo que se requiere hoy en día. El saber más cosas no necesariamente se traduce en saber hacer, en desarrollar competencias. Esto está enmarcado dentro de una reforma que incluye todo el proceso de formación de un estudiante.

Interviene Carlos Angulo

Voy a hacer una referencia breve a la reforma curricular de Ingeniería que hemos adelantado en la Universidad de los Andes, que va en la dirección opuesta a la que se mencionaba. Hemos reducido de 156 a 137 créditos, pero hemos fortalecido las ciencias y lo que hemos reducido son los créditos enciclopédicos profesionalizantes del final de la carrera, porque pensamos que son cursos que se le olvidan al estudiante después de cinco años o que ya son irrelevantes. Y lo que es fundamental es esa formación básica, sólida, interdisciplinaria. En el caso de Física, por ejemplo, se han mantenido los cursos de Física, se ha introducido la electividad, y se introdujo la Biología para los ingenieros.

P. Catalina Granda Carvajal. Estudiante de la Universidad Nacional, sede Medellin. La pregunta va dirigida al viceministro de Educación, pero antes de la pregunta
quisiera hacer un comentario sobre la conferencia del profesor Kümmel. La visión que propone el profesor Kümmel es una visión contraria a la que tienen los economistas sobre el sistema económico, que está basada en los planteamientos mecanicistas, y la visión que plantea el profesor Kümmel parte de la termodinámica. Eso tiene consecuencias importantes, pues la teoría del profesor Kümmel rompe con todas las teorías de los economistas clásicos sobre la producción y la distribución. La pregunta tiene que ver con la interdisciplinariedad. ¿Cómo se mira, desde el punto de vista de las políticas del gobierno, este tipo de formación, sobre todo en el nivel universitario?

Interviene Javier Botero

Desde el Ministerio, y en una forma muy sensata, no se interfiere en lo que deben hacer las universidades con sus organizaciones curriculares. Dentro del marco de la autonomía que tienen las universidades, y exigiendo el cumplimiento de unos estándares de calidad, el Ministerio ha sido muy respetuoso de que sean las universidades las que formulen sus programas. Por eso, como lo mencionaba antes, no hemos dicho ni cuál es el mínimo de créditos ni cuál es el mínimo de años. Porque las condiciones de las universidades -recursos, exigencias en cuanto a nivel académico, etc.- son distintas. Si el Gobierno interveniera en esos temas podría encasillar la educación y limitar la creatividad de los formadores y de los procesos de formación.

Por otra parte, yo considero que la multidisciplinariedad y la interdisciplinariedad son muy importantes y lo son mucho más en los estudios de pregrado. Nosotros creemos que la educación tiene que tener un objetivo muy claro: que el estudiante realmente aprenda a aprender.

P. Iván Melo. El gobierno y las entidades ven a los físicos como algo exótico que hay que ver en seminarios, pero no les importa apoyar su trabajo. No hay recursos para investigación en el Banco de la República porque a ellos sólo les interesa bajar la inflación. La pregunta es para el doctor Kümmel. ¿Cuál sería la alternativa a ver las cosas simplemente desde el punto de vista monetario? La segunda pregunta es ¿cómo cambiar ese formalismo para que la gente entienda mejor la Física?

Interviene Reiner Kümmel

Nosotros los físicos tenemos el problema que ya mencionó el doctor Hoyos del pedestal en el que están las Matemáticas y la Física. Tratamos mucho de explicar en
palabras sencillas lo que nos parece importante para la sociedad. Y siempre hay que buscar un camino que sea correcto, sin ser demasiado complicado y siempre se puede caer en un camino que vaya de un lado al otro, es decir, que sea incorrecto o que no sea entendible, pero tenemos una responsabilidad: hacernos entender por los políticos y para eso hacemos conferencias para el público en general. Se requiere un cierto esfuerzo por parte del público, aunque no sea con ecuaciones sino con palabras, porque es un razonamiento de lógica y muchas veces los razonamientos lógicos no son muy populares. Hay estudios que han demostrado que el 80% de las decisiones que toma la gente no se hacen con la cabeza sino emocionalmente. Nosotros tenemos que traducir lo que hemos entendido en mensajes emocionales, sin perder la honradez.

En las elecciones alemanas, dos de los candidatos a ser canciller son físicos: Ángela Merkel, doctorado en Física química, quien probablemente será canciller, y Oskar Lafontaine, quien hubiera podido llegar a ser canciller en el año 1990 si no hubiera habido la reunificación de Alemania, cuando fue reelegido Helmut Kohl. Cada vez más los científicos se mueven en el campo político, vamos a ver qué pasa en el futuro. Pero ese ingreso de los físicos a la política indica que estamos apelando al lenguaje emocional para comunicarnos con el público en general más fácilmente.

Interviene Luis Enrique Arango

Yo quisiera aprovechar la referencia que hizo el joven a algo que yo dije con rela-
ción al desencuentro que hay en los deseos de la sociedad sobre el estudio de la Física y de la Ciencia Básica en relación con su importancia real, señalando que desde el aula hay que hacer cambios. Nuestros docentes no han encontrado la forma de simplificar la enseñanza de la Ciencia Básica. Son muchas las cosas que se pueden hacer para hacerla más fácil, más digerible, para enamorar a la sociedad con esas disciplinas que definitivamente son muy simples. No quisiera irme sin leer unos apartes del documento que había preparado, pues son muy pertinentes para lo que estamos tratando.

Tengo dos párrafos en los que Stephen Hawking explica la segunda ley de la termodinámica, en una forma tan simple que me gustaría leerla: «el determinismo científico también funciona retrospectivamente; conocido el estado del universo en un instante dado, hay una única historia anterior que ha conducido hasta ella. Si es así, ¿por qué no contamos la historia hacia atrás? La razón es que, como habitualmente carecemos del conocimiento completo del estado del sistema, es más probable que podamos predecir su evolución futura que su historia pasada. Consideremos, por ejemplo,
un rompecabezas en una caja y supongamos que se encuentran en un estado en el que todas las piezas encajan. Si agitamos la caja, es probable que el rompecabezas pase a un estado desordenado en el que la figura está fragmentada y las piezas amontonadas sin regularidad alguna. Sin embargo, como el rompecabezas se hallaría ahora en un estado desordenado, sería muy difícil determinar que su historia anterior procedía del estado completamente ordenado. Para lograrlo sería necesario conocer con exactitud el estado desordenado actual y el movimiento de la caja durante la agitación. Esto constituye una manifestación de la denominada ley de la termodinámica, que es la forma científica de expresar con precisión la Ley de Murphy: las cosas sólo van a empeorar.

«La segunda ley afirma que los sistemas evolucionan a estados más desordenados. La razón es simple; hay muchos más estados desordenados que ordenados. En el caso del rompecabezas, hay un solo estado completamente ordenado en el que todas las piezas encajan, un cierto número de estados con algunos grupos de piezas encajadas entre sí y un gran número de estados en los que la figura está completamente fragmentada y las figuras amontonadas o diseminadas. Si el rompecabezas se haya en un estado parcialmente ordenado, es más probable que agitar la caja lo lleve a uno de los muchos estados más desordenados que a uno de los pocos más ordenados. En otras palabras, si agitamos la caja, es probable que fragmentemos aún más la figura. La probabilidad de que ésta se recomponga espontáneamente es muy remota».

Esta es un aproximación que, para mí, sin ser un físico, se me hace más fácil poder entender eso que, aparentemente, es muy complejo, como es la segunda ley de la termodinámica.

Interviene Rafael Hurtado

Nos queda, así, una respuesta. Hay una parte de político en todos los seres, que nosotros los físicos debemos reconocer en nosotros mismos para poder proyectarnos hacia nuestro entorno, usando nuestros métodos y herramientas y nuestras habilidades ciudadanas. Muchísimas gracias a los conferencistas; ha sido muy agradable esta conversación. Muchas gracias a Colciencias y a todos ustedes por haber participado.
Mesa redonda III

Moderador:
Bernardo Gómez. Director del Departamento de Física de la Universidad de los Andes.

Participantes:

Manuel Elkin Patarroyo
Director del Instituto de Inmunología de Colombia.

Carolina Isaza
Vicerrectora de Investigación de la Universidad del Valle.

Mary Falk de Losada
Rectora de la Universidad Antonio Nariño.

Ángela Camacho
Profesora de Física de la Universidad de los Andes.

Patricia Camacho
Programa Educación, compromiso de todos.

Interviene Bernardo Gómez
Bienvenidos a esta mesa redonda. Voy a cederle la palabra al doctor Manuel Elkin Patarroyo para que inicie su presentación.
Interviene Manuel Elkin Patarroyo

Quiero agradecer muy cordialmente a Colciencias esta gentil invitación a estar aquí compartiendo algo que siempre ha sido un sueño para nosotros, que desde un punto de vista eminentemente científico podamos atacar los problemas de la biología para tratar de encontrar soluciones a grandes problemas o problemas universales.

Qué es lo que estamos trabajando en el Instituto de Inmunología de Colombia. Estamos buscando una metodología lógica que aplique las leyes de la Física y de las Matemáticas para obtener vacunas. La gente pensaría que es un exabrupto, pero no es así porque es importante llegar a desarrollar vacunas. Alrededor de 17 millones de personas fallecen anualmente como consecuencia de enfermedades. Luego, si hubiese una metodología lógica, racional, matemática, de desarrollar vacunas, ese número de personas no moriría por causa de enfermedades. También, dos terceras partes de la humanidad desarrollan esas enfermedades. A lo primero se le llama mortalidad; a lo segundo, morbilidad. Alrededor de 2 millones de personas mueren como consecuencia de la malaria; 3 millones, de tuberculosis; 3 millones, de diarreas; 4,5 millones, de bronconeumonias; 1 millón, de hepatitis y 1 millón, de sida. Esas cifras nos muestran la magnitud del problema.

Las vacunas están basadas en el principio de Pasteur, quien lo desarrolló en 1884, y éste utiliza al microbio causal de la enfermedad muerto mediante métodos físicos o químicos o mutantes que existen en la naturaleza, que son capaces de inducir las defensas, pero no la enfermedad. Eso son las vacunas. Me voy a circunscribir al modelo que hemos utilizado para el análisis de estas leyes físicas que pueden estar determinando la posibilidad de desarrollar vacunas.

Hablaremos exclusivamente de la malaria, que es causada por el mosquito anofelinos. La malaria es una enfermedad aguda; se desarrolla en menos de una semana, es de fácil diagnóstico, es curable con tratamientos clásicos. Es una enfermedad modelica, pero, además, tiene un modelo experimental apropiado. El mosquito, al picar, inocula el parásito; este parásito tiene mucha movilidad y gracias a ella va a llegar, a través de las venas, hasta las células del hígado. Cada larva se reproduce en cada una de las células del hígado treinta mil veces en un período de cinco días; sale con otra forma (como una especie de perita) que infecta los glóbulos rojos, se reproduce en cada glóbulo rojo cincuenta veces cada dos días, y puede llegar a matar a la persona infectada. Algunas de esas peritas se vuelven macho y hembra, y esas son las que se toman posteriormente por una mosquita no infectada, reproduciendo el ciclo completamente.

Los esquemas clásicos de producción de vacunas consistentes en trabajar con el microbio muerto o mutado son prácticamente imposibles de usar en la malaria; no se
puede sacar suficiente cantidad de larvas de las glándulas salivales de los mosquitos y
tampoco se pueden sacar peritas, porque se necesitarían piscinadas de sangre para sacar
la cantidad suficiente de parásito para poder vacunar a alguien. Conscientes de eso,
hace veinticinco años nosotros nos dedicamos a resolver el problema desde el punto
de vista de la Química, para luego atacarlo desde el punto de vista de la Física, y luego
aproximarnos a él desde el punto de vista de las matemáticas.

Nos fuimos al Amazonas, donde cada cuatro meses hay una estación de unos
monitos que son muy susceptibles a desarrollar la malaria humana, siendo el único de
los animales de sangre caliente que desarrolla la malaria en la misma forma como la
desarrolla el ser humano. Tomamos las moléculas de la superficie de la perita, las sacamos
una por una, las ensayamos en los monitos tratando de ver cuáles podían servir como
vacunas. Conocida la estructura química de esas moléculas, hicimos fragmentos de ellas
para vacunar a los monos. Eso nos dio la primer vacuna químicamente hecha en la
historia, con una efectividad del 50%.

Posteriormente, ensayamos una versión que es una molécula en la que están pe-
gados todos los pequeños fragmentos y desarrollamos la famosa SPF 66 o Vacuna Co-
lombia contra la Malaria, que lleva más de 18 años de haber sido desarrollada. Cuando
aplicamos la vacuna en campo, encontramos que era capaz de proteger entre el 38% y
el 50% de la gente vacunada. Esos estudios los adelantaron otros colegas nuestros en
Venezuela, Ecuador y Brasil, con una capacidad de protección de aproximadamente el
40%. Otros investigadores ensayaron la vacuna en Tanzania, donde la eficacia fue del
35%. Estos resultados nos indicaban que, aunque habíamos desarrollado la primera
vacuna químicamente hecha, la misma era incompleta y que teníamos que continuar el
trabajo para buscar lo que nos estaba faltando.

Los trabajos realizados por Mauricio Calvo en el Instituto nos permitieron en-
contrar que los fragmentos con los cuales estábamos trabajando eran fragmentos que el
parásito usaba para pegarse e invadir los glóbulos rojos y, con base en ese marco concep-
tual, encontramos que lo que estábamos haciendo era inducir una respuesta inmune
contra esos fragmentos, bloqueando la interacción entre receptor y emisor. Hace tres
años que se descubrió completamente el genoma del parásito, y se sabe que el mismo
tiene 58 proteínas diferentes a nivel de la perita. Conociendo la estructura química de
esas proteínas, nos dedicamos a buscar cuáles son los fragmentos químicos a través de
los cuales el parásito se pega a los glóbulos rojos, para desarrollar así la vacuna que nos
lleve a un 95% o más de eficacia.

Lo que hemos venido haciendo es que, conocida esa estructura, sintetizamos en
fragmentos de a veinte aminoácidos y miramos con cuáles de ellos el parásito se pega a
los glóbulos rojos o a las células del hígado. Reconocimos muchos fragmentos, en los cuales hay unos que no tienen variación genética, mientras que hay otros que tienen un tremendo polimorfismo genético. Para facilitar el desarrollo de la vacuna, nos hemos concentrado en trabajar con los fragmentos que no tienen ninguna variabilidad genética. Existe un problema, que el sistema inmune es ciego a las manos conservadas; si no, hace rato se hubieran acabado los microbios. Esa es la razón por la cual fue necesario conseguir, con la ayuda del gobierno, aparatos de resonancia nuclear magnética de dos y tres dimensiones. Basados en el conocimiento tridimensional de las moléculas pudimos entrar a comprender qué era lo que sucedía.

En esencia, lo que sucede es que las manitas conservadas de los microbios son demasiado cerradas, con una estructura eminentemente alfa, en la mayoría de los casos, y esa estructura hace que no sea reconocida por el sistema inmunológico. Lo que hemos venido haciendo en los últimos años es analizar qué tenemos que hacer para abrir la mano y hacer que se ajuste dentro de las moléculas del sistema inmunológico. Así llegamos a la conclusión de que teníamos que tener una metodología lógica, racional, que terminó siendo un hallazgo extremadamente simple: a aquellos deditos que se llaman aminoácidos críticos, en la unión del parásito con la célula que va a infectar, voltearles la polaridad, manteniendo en ellos la superficial, el volumen y la masa; de esa manera, hacer la inversión y la apertura de la mano.

Además, hemos adelantado la estructura tridimensional a través de la resonancia nuclear magnética o a través de la cristalografía de rayos X. Identificada la estructura tridimensional de algunas de las moléculas completas, o de las manitas o de los fragmentos, encontramos que hay prácticamente una identidad entre las moléculas que estamos utilizando para vacunar y los fragmentos que corresponden a esas moléculas que el parásito utiliza para hacer la unión a la célula que va a infectar. A través de los estudios de estructura tridimensional, y a través de ingeniería genética, encontramos que las moléculas del sistema inmunitario del monito son entre 90% y 100% idénticas u homólogas a las del ser humano, lo que nos brinda una ventaja muy grande.

En esencia, la manito del microbio, es decir, el ligando del microbio, hay que abrirlo para que ajuste perfectamente dentro de las moléculas del sistema inmune a un punto en el cual sea 23,5, más o menos 1,5 armstrongs de distancia y que la polaridad de los residuos de los aminoácidos críticos queden apropiadamente orientados. Conociendo esas reglas, podemos hacer el diseño racional y lógico de cualquier vacuna, puesto que estas son leyes de la Física que determinan la estructura tridimensional de las moléculas de tipo proteico.

También pudimos explicar los mecanismos de evasión de los microbios, qué pasa cuando un microbio induce anticuerpos que no sirven para nada o qué pasa cuando in-
duce anticuerpos muy cortos. A través de la estructura tridimensional pudimos explicar qué pasa cuando se da una estructura no de anticuerpos, sino de glóbulos blancos, lo que nosotros llamamos respuesta celular.

Estamos trabajando, aplicando esta misma metodología, en el desarrollo de la vacuna contra la malaria causada por el plasmodium vivas, otra vacuna contra la hepatitis C y otra contra la tuberculosis. También estamos trabajando en el virus del papiloma. Y hoy podemos identificar ese tumor en mujeres que lo están desarrollando para bloquear la interacción entre las moléculas y las células que va a infectar. Con un equipo de matemáticos que trabaja en el Instituto, estamos tratando de desarrollar una metodología matemática. Estamos analizando, con química cuántica y alta computación, los análisis de los aminoácidos y los momentos multipolares de los mismos.

Muchas gracias a María del Rosario Guerra y a Felipe García por la invitación. Y gracias a ustedes por tener la paciencia de escucharme.

Interviene Bernardo Gómez

Antes de continuar con las presentaciones, quisiera motivar esta mesa redonda con una reflexión. Hemos visto dos presentaciones de contribuciones científicas que realizan colombianos. Primero, la presentación de Ana María Rey Ayala, quien recibió recientemente el premio a la mejor tesis doctoral de Estados Unidos, premio que otorga la Sociedad Americana de Física, en la división de Física Atómica, Molecular y Óptica. Y acabamos de oír la presentación del doctor Manuel Elkin Patarroyo. Para que los colombianos lleguemos a producir ciencia se requiere que tengamos todo un sistema que nos lleve al más alto conocimiento y a la más alta calidad. Requerimos universidades que nos preparen con los estándares internacionales y ese es nuestro tema en este momento. Se trata de la contribución de nuestras instituciones para lograr formar científicos que puedan hacer contribuciones destacadas a nivel mundial.

Interviene Mary Falk de Losada

Ante todo, quiero agradecer a Colciencias y a todos los que participaron en la organización de este Simposio por la invitación a participar en esta mesa redonda. Yo quisiera, también, expresar mi alegría por la oportunidad que tuve de escuchar esta mañana unas exposiciones realmente tan consolidadas desde el punto de vista de la investigación científica que nos hacen sentir la satisfacción de compartir el cuarto con
unas personas de pensamiento profundo y con un sentido de poner sus capacidades al avance de la ciencia y a mejorar las condiciones en las que vivimos los seres humanos.

Ayer hubo una discusión sobre un círculo vicioso que puede formarse en una sociedad cuando no hay suficientes personas que se dediquen al estudio de la ciencia; y una de las formas como se puede romper ese círculo vicioso es la universidad, no desde el punto de vista de esperar una solución milagrosa, sino desde el punto de vista del liderazgo, porque ninguna solución que se proponga será exitosa si no hay liderazgo. Voy a hablar del liderazgo que puede ejercer la universidad frente al sistema educativo.

Es de todos conocido que hace unos ocho años Colombia hizo parte de una prueba internacional de nivel de desarrollo en el aprendizaje de las matemáticas y las ciencias, una prueba en la que, en efecto, a Colombia no le fue muy bien, pues quedó de penúltimo —en el último lugar estuvo Suráfrica—. En ese momento, desafortunadamente no hubo el liderazgo que se requería para que, frente a esa experiencia negativa, se desarrollara un plan de largo plazo de intervención, de acompañamiento, de generar nuevas ideas para mejorar en las escuelas, a nivel general, la enseñanza de las matemáticas, y de las ciencias en general.

Otro ejemplo es el de las Olimpiadas de Matemáticas y de Física, eventos que involucran a 150,000 muchachos al año, y que, a lo largo de 25 años, ya han podido construir un nivel de desempeño, de competencia internacional, no con todos los estudiantes, sino con aquellos que muestren interés y talento en matemáticas y física. Este año, en la Olimpiada Internacional de Matemáticas participaron 92 países, 17 de la región iberoamericana. Colombia ocupó el primer puesto entre los países iberoamericanos; ocupó el puesto 27 entre los 92 países. Colombia fue capaz de ganarle a Irlanda, Francia e India. Eso se logra con liderazgo, con preparación, con planeación y con perseverancia.

El profesor Kümmer mostró, en su conferencia del día de ayer, entre otras cosas, que los diferentes modelos económicos buscaban abaratar costos con la mano de obra barata en los países en desarrollo. He tenido otra experiencia; desde el año 2003 he pertenecido al Comité Permanente que tiene la Unión Matemática Internacional en educación matemática y sé cuáles son algunas de sus inquietudes. La Unión Matemática Internacional está buscando en los países en desarrollo a los matemáticos del futuro.

Ya en los países desarrollados no se encuentra que el estudiante quiera dedicarse a la ciencia básica y a las matemáticas, pues tienen otras alternativas y otros intereses, pero también hay un factor sobre el que hablaba el padre Remolina ayer: el padre se preguntaba cómo van a gastar los padres todo ese dinero para que sus hijos estudien ciencia básica. En los países desarrollados, el estudiante talentoso e interesado en las ciencias
básicas se está dedicando a las ciencias computacionales, a la tecnología, más que a la ciencia básica. El plan de la Unión Matemática Internacional es fomentar el estudio de la ciencia y de la matemática en los países en desarrollo y buscar allí a quienes llenen ese vacío que se está creando de recurso humano calificado.

Nosotros no podemos darnos el lujo de dejar de llegar a toda nuestra población con unas alternativas de excelencia en la educación en ciencias básicas y en matemáticas. Nosotros tenemos que mirar que no es tanto el conocimiento que se transmite, sino, más bien, la forma como puede desarrollar el estudiante, desde la juventud, sus capacidades de resolver problemas, de desarrollar su pensamiento con sus características específicamente matemáticas o de lo que se requiere para poder pensar consecuentemente en la Física y en las ciencias básicas. Nosotros, desde la universidad, tenemos cómo ejercer ese liderazgo mostrando la posibilidad de llegar a la competitividad internacional y mostrando esas actividades que, en el largo plazo, inculcan y permiten al estudiante ejercer su curiosidad y dedicarse a investigaciones que, eventualmente, lo formarán en la Matemática y en la Física.

Muchas gracias

Interviene Carolina Isaza

Quiero saludarles en nombre del doctor Iván Ramos, que era quien estaba invitado a este foro, pero que, por problemas ajenos a su voluntad, no pudo asistir. Quiere agradecer a todos los conferencistas por la forma tan sencilla como presentaron sus teorías. Por ejemplo, ante el título de la conferencia de la doctora Ana Maria Rey, yo pensaba que no iba a entender nada y que iba a salir de aquí llena de ecuaciones. Toda la presentación fue tan sencilla y explícita que la entendí muy bien.

Estoy de acuerdo con que la universidad debe tener un papel muy importante en la investigación, ya que todas las universidades están fundamentalizando el desarrollo del conocimiento en investigación. La Universidad del Valle tiene una trayectoria grande en investigación y si uno mira los grupos que han tenido más éxito en investigación encuentra que tienen una serie de ingredientes en común: la interdisciplinariiedad, que se basan en programas más que en proyectos, que hacen investigaciones a largo plazo, entre otras. Eso coincide un poco con lo que se está haciendo con la reestructuración de Colciencias.

En la Universidad del Valle han comenzado a aparecer consorcios, lo que también es algo muy interesante desde el punto de vista de la investigación, para apoyar todo el
proceso de desarrollo de un programa y, por eso, nosotros consideramos que desde las vicerrectorías de investigación el plan básico es liderar este tipo de procesos entre las distintas universidades. El desarrollar proyectos de investigación aislados ha dejado una cantidad de conocimiento aislado y hasta muchos artículos publicados en revistas muy importantes. Pero cuando todo esto se mira como un programa, tiene la posibilidad de incluir más gente y de construir cosas mucho más importantes y ligadas entre sí a un fin de largo plazo.

Las universidades han venido fortaleciendo las alianzas con las agendas prospectivas de los departamentos y éste ha sido un paso muy importante dentro de lo que van a ser el desarrollo y la innovación hacia adelante y frente a los problemas estratégicos de los departamentos. Hago una invitación a pensar en esos términos y a buscar cómo, desde la investigación, se pueden desarrollar soluciones innovadoras para los problemas de las regiones y nacionales. La Universidad del Valle está muy comprometida a trabajar con el gobierno departamental y con la comunidad, tanto en el departamento como en la cuenca del Pacífico.

Muchas gracias

Interviene Ángela Camacho

Quiero, para empezar, agradecer la invitación y felicitar a Colciencias por la gran idea que tuvo de organizar este Simposio para que Colombia participe activamente en la celebración del Año Mundial de la Física. Estamos en un país que está muy necesitado de un foro abierto en el que intervengan las universidades, el gobierno, la industria, la sociedad toda. Lo que voy a hacer es plantear unas preguntas, muchas de las cuales probablemente se queden sin respuesta. Mi planteamiento es muy sencillo: mientras no haya mayor formación de investigadores, ni mayor apoyo a la ciencia y la tecnología, Colombia continuará siendo un país subdesarrollado. Ésa parece una frase de cájón, pero es una frase en la que debemos pensar todos con mucha seriedad.

Es importante que gobierno, universidad y empresa privada hagan una alianza para formar una masa crítica de profesionales que puedan crear conocimiento, innovar, desarrollar productos y crear una industria nacional fuerte. ¿Por qué Colombia no ha podido desarrollar este modelo? Hay muchísimos ejemplos de colombianos haciendo investigación en temas muy avanzados e interesantes —y aquí vimos dos: la doctora Ana María Rey y el doctor Patarroyo—, lo que nos indica que los colombianos podemos in-
vestigar. ¿Qué nos hace falta? ¿Por qué el país no se ha desarrollado? El país ha tratado de desarrollar un sistema de investigación en ciencia y tecnología; los resultados no se ven porque Colombia empezó tarde.

Colciencias se creó en 1968 con el objetivo de promover la formación de profesionales de alto nivel y apoyar la investigación en el país. En 1970 se crearon las primeras maestrías y en 1986, los primeros doctorados. Estas fechas nos dicen que realmente estamos muy atrasados con respecto a los países desarrollados e, incluso, con respecto a nuestros vecinos. En 1990 se creó el Sistema Nacional de Ciencia y Tecnología. En 1991, Colciencias empezó a hacer seguimiento del crecimiento de la investigación y a llevar estadísticas. La historia científica colombiana es, pues, muy corta. Mientras la mayoría de los países desarrollados cuenta con entre cincuenta y cien años de historia científica, Colombia apenas cuenta con 37 años.

Pero hay otras razones. La inversión en ciencia y tecnología, por lo menos entre 1998 y el 2001, bajó en un 30%. El número de grupos de investigación y el número de investigadores, sin embargo, se duplicaron desde el 2001. Esto qué significa. ¿Estamos progresando o no? ¿Qué nos dicen estos números y hacia adónde nos llevan? De acuerdo con la recomendación de Ciencia, Educación y Desarrollo —comúnmente conocida como la Misión de los Sabios—, Colombia debería tener en este momento 25.000 investigadores; no llegan a 11.000, de los cuales sólo 1.780 tienen doctorado; 3.700, maestría y el resto sólo tiene pregrado. Analicemos un poco estas cifras. No llegamos ni a la mitad de la propuesta de la Misión y, lo que es peor, de esa mitad sólo el 16% tiene doctorado y el 33% tiene el nivel de maestría.

Si nos parece bajo este total, con más de la mitad de los investigadores a nivel de pregrado, no podemos esperar desarrollar ciencia en nuestro país. Entonces, no estamos progresando. Necesitamos urgentemente, por lo menos, duplicar el número de investigadores con doctorado, principalmente en ciencias básicas. ¿Cómo lo logramos? Una de las ideas que más se ha debatido en este foro es la calidad de la educación. En 1995 se creó el Consejo Nacional de Acreditación para evaluar programas de educación superior. En el 2003 se creó la Comisión Nacional de Aseguramiento en la Educación Superior para hacer cumplir las normas mínimas de calidad. Se crearon los exámenes de calidad de la educación superior —Ecaes—. Esperamos que en el 2006 empiece a operar el observatorio laboral para hacer un seguimiento a los egresados y ver cuál es la recepción que tiene el sector productivo de los nuevos profesionales.

La calidad de la educación, basada en investigación y en globalización; la globalización exige crear conciencia de que el conocimiento se construye universalmente y es patrimonio de todos los hombres y mujeres del planeta; exige insertar a los investigadores
en redes globales que conformen la sociedad del conocimiento más allá de las fronteras entre naciones. Es la globalización de la solidaridad. Necesitamos eliminar el aislamiento para poder elevar el nivel de la educación y volver conscientes a nuestros estudiantes de la necesidad de prepararse a los más altos niveles internacionales.

Pero, pensemos, ¿por qué ciencias básicas? Las ciencias básicas abren horizontes para potenciar los recursos. Nuestros jóvenes prefieren dedicarse a finanzas, a comercio o a servicios; el ejemplo de esto es el año 2000. En ese año, la distribución de graduados de pregrado muestra un total de 95.206: en ciencias exactas y naturales, 1.529 (menos del 2%), mientras que en ciencias sociales hay más del 50% y en ingenierías y tecnología se encuentra alrededor del 25%. Estos números hablan por sí solos de la necesidad que tiene el país de incentivar en sus jóvenes el gusto por la ciencia y por la investigación básica.

¿Cómo incentivar en los jóvenes el gusto por la ciencia? Esto empieza en la secundaria, donde por primera vez el joven tiene realmente contacto con la ciencia. Necesitamos maestros de secundaria que tengan una preparación suficientemente alta como para incentivar en sus alumnos el interés científico. Debemos empezar por preparar nuestros docentes en secundaria; ya lo estamos haciendo, hay varios ejemplos de ello. Está, por ejemplo, la Asociación Colombiana Pro-enseñanza de la Ciencia; esta asociación reconoce que hay que mejorar la calidad de la enseñanza de la ciencia si se quiere tener posibilidades de desarrollo tecnológico. Otro ejemplo, la Declaración de Medellín, un documento elaborado con ocasión de la celebración del bicentenario de la Universidad de Antioquia, en el que se proponía la Década de la Ciencia —entre el 2003 y el 2012—, en concordancia con la revolución científica, para desarrollar un plan nacional que permitiera la apropiación de la ciencia.

Estos brotes de sensibilidad social para preparar al país para un mejor futuro son el reflejo del despertar de una conciencia social. Los escaños que debemos superar comienzan, entonces, con la educación, pero tienen que seguir en un nivel crucial de desarrollo para reconocer las capacidades y las aptitudes de los jóvenes. Debemos hacer énfasis en que debemos desarrollar bases fuertes para sacar adelante al país. De nuevo surge la alianza gobierno-universidad-industria como un eje para lograrlo. ¿Qué se ha hecho hasta ahora? ¿Qué se ha logrado? Me gustaría hacer énfasis en este punto, pues considero que es un punto neurálgico en el desarrollo en la ciencia en Colombia: la necesidad de apoyar los grupos de investigación ya consolidados o en vías de consolidación, especialmente los que están ligados a un programa de doctorado.

Pareciera que a grupos consolidados ya no es necesario apoyarlos, porque ya están desarrollados; pero en Colombia, aún los grupos más consolidados sólo cuentan con 23
años de historia. Más de la mitad de los grupos de investigación sólo cuentan con una trayectoria de 3 a 5 años. Este dato indica una gran vulnerabilidad, pues hay un enorme riesgo de que estos incipientes esfuerzos desaparezcan si no hay una política decidida de apoyo a la ciencia.

Por último, quisiera hacer una corta reflexión sobre la participación femenina en investigación. En ciencia, la participación femenina es muy pequeña, a pesar de que, numéricamente, casi la mitad de los investigadores son mujeres. El número de investigadoras ha crecido del 38% en 1998 al 40% en el 2002. Pero ¿qué hacen? Principalmente son auxiliares de investigación y dentro de este grupo el número va descendiendo a medida que se asciende en el escalafón. El porcentaje global es de 18% de mujeres y la mayoría de ellas están en áreas como lenguaje, educación, enfermedades, salud. Así, en el nivel de maestría hay un 20% y en doctorado, menos del 10%.

Por qué es importante involucrar a la mujer en programas de investigación. En Colombia las mujeres hacen la tarea: este es el título de un artículo de Consuelo de Santamaría, quien hace estudios sobre el papel de la mujer, y que concluye que la participación de la mujer en los sectores financiero, industrial y comercial muestra que, aunque en Colombia es alta la proporción de mujeres ejecutivas, en comparación con otros países de Latinoamérica, relativamente hay pocas mujeres colombianas en puestos de dirección, a pesar de que se cuenta con un número suficiente de mujeres capacitadas. La razón es una discriminación e structural implícita en la selección.

Las entrevistas que logró Consuelo de Santamaría tienen características comunes que nos hacen pensar que sería muy interesante lograr que las niñas se interesaran por la ciencia. El estilo femenino es un estilo abierto, participativo, con estrategias claras para manejar las exigencias propias de su trabajo; son muy organizadas y comprometidas, honestas y responsables, dedicadas y consagradas, y todas tienen resultados concretos que mostrar.

Muchas gracias

Interviene Patricia Camacho

Muchas gracias a Colciencias por esta invitación, tan arriesgada en esta mesa, pues claramente soy la representante de los invitados que nada tenemos que ver de manera directa con la Física. Es un reto grande para mí. Les voy a hablar del proyecto Educación, compromiso de todos, cuyo objetivo es hacerle evaluación y seguimiento a la política educativa y busca la cualificación de la opinión ciudadana con el ánimo de
posicionar una educación equitativa, incluyente y de calidad en la agenda de debate público.

Trabajamos permanentemente con la ciudadanía en general, recogemos las experiencias y opiniones que tienen los ciudadanos sobre la educación; trabajamos con el gobierno y con los expertos y analizamos la política educativa, si lo que se está haciendo es positivo para el país, si lo están haciendo bien. Lo que se ha encontrado en estas mesas de trabajo y en las opiniones de los expertos está muy relacionado con lo que se ha expuesto hoy: la necesidad de la investigación para el desarrollo del país; la necesidad de investigadores y grupos de investigación; la necesidad de aumentar la inversión en ciencia y tecnología.

Es necesario tener un ciclo educativo completo y dinámico, tal vez un ciclo con todas las leyes de la Física explícitas en él. Un ciclo que tiene tres fases: la primera es la generación de la demanda por el estudio de las ciencias básicas y esta demanda se debe incentivar desde los primeros años de vida de los niños; desde nuestras casas debemos incentivar a los niños y generarles esa curiosidad permanente. Llevarlos a las bibliotecas, responderles con un ánimo investigativo que los invite a analizar y a profundizar en la investigación.

La segunda parte del ciclo es generar una oferta de calidad y pertinente para todos los bachilleres; tenemos que crear programas de alta calidad y crear condiciones económicas para que los estudiantes puedan mantenerse en la universidad. La tercera fase del ciclo, después de tener una demanda de estudio y una oferta adecuada, es tener un mercado laboral suficientemente atractivo para los estudiantes. En este punto se requiere el trabajo tanto de la academia como del sector productivo. Obviamente, nadie quiere estudiar e invertir recursos en educación para terminar como desempleado o trabajando en algo que no es de su campo. Ese es el ciclo que Colombia tiene que lograr para tener los investigadores que sueña el país y, por tanto, lograr un desarrollo mayor.

Para terminar, quería referirme a los resultados de un estudio de percepción ciudadana que el Programa hizo con la firma Napoleón Franco. Entre las muchas cosas que encontramos es que la ciudadanía quiere estudiar y reconoce la importancia de la educación en todos sus niveles. Sin embargo, hay problemas económicos, pero también aparece recurrentemente el tema de que no haya expectativas laborales en este país. La gente considera que Colombia no es un país en el que hay condiciones favorables para el avance tanto personal como del país mismo, es decir, los colombianos no tienen fe en el país. Los encuestados consideran que la presencia de grupos armados ilegales, la situación de la política y la corrupción en los sectores público y privado son tres factores negativos para el desarrollo del país. Un dato preocupante que da la encuesta es que el 52% de las personas no tiene acceso a un computador.
Todo esto para concluir que el desarrollo del país es un problema económico, es un problema social y, como decía el doctor Rafael Gutiérrez, es un problema de las interrelaciones sociales y personales. El desarrollo se logra trabajando en muchos frentes comunes, necesitamos paz, necesitamos empleo y un sector educativo que genere ciudadanos con sentido de pertenencia y que se sientan orgullosos de su país y que confíen en las instituciones. Sobre todo, un sistema educativo que genere los inventores que se requieren para cumplir el paradigma de este siglo, como lo señalaba el profesor Giaever: inventar.

Muchas gracias.

* Preguntas

P. Diego Torres. Yo quería referirme a tres programas de Colciencias: el de Apoyo a los doctorados nacionales, el de Jóvenes investigadores y el de Riesgo compartido empresa-Colciencias. Son programas que existen y que funcionan relativamente bien, a pesar de lo limitado de los recursos. En el programa de Riesgo compartido el problema es que en Colombia no nos arriesgamos. El programa de Jóvenes investigadores es interesante, pero si se compara la cifra que recibe un joven investigador con lo que recibe un profesional, se encuentra que el investigador gana muy poco. Mi pregunta concreta va a la Directora de Colciencias, doctora María del Rosario Guerra, y tal vez al director del Programa de Ciencias Básicas, y se refiere al programa de Apoyo a los doctorados nacionales. En Colombia improvisamos muchísimo; ayer la doctora Cecilia López empezó su intervención diciendo que los colombianos nos estamos acomodando peligrosamente en la mediocridad, pero terminaba su discurso diciendo que éramos muy trabajadores. Yo he sido beneficiario de los tres programas; actualmente lo soy del de Apoyo a los doctorados nacionales. Sin embargo, las exigencias del programa son muchas: tenemos que terminar el doctorado, tenemos que publicar, tenemos que tener experiencia con un grupo de investigación internacional. El programa funciona y el apoyo es bueno, a pesar de la demora en los pagos, que los hace otra entidad. La pregunta es ¿Colciencias va a mantener este programa, por cuánto tiempo y si piensa hacer un seguimiento estricto para que no haya improvisación en las universidades y en los programas de doctorado?
Interviene María del Rosario Guerra

Por supuesto que se va a mantener; con recursos de crédito del Banco Mundial, el programa va hasta el 2008, o sea que desde ya hay recursos para garantizar el programa. Vamos a mantenerlo, además, porque nos está mostrando que hay que fortalecer los programas de doctorado nacionales y la mejor forma de hacerlo es garantizando que haya un recurso humano que quiera hacer doctorados en el país. Adicionalmente, vamos a fortalecerlo facilitando que los colombianos que están en el exterior puedan aprovechar el periodo de verano de muchas de las universidades en las que están estudiando para venir como profesores a las universidades. El programa va a tener un seguimiento tanto a la infraestructura como al recurso humano. Igualmente, usted lo ha dicho, la entidad que paga, el Ictetex, a veces se demora en hacer los pagos. Ya estamos trabajando con esa entidad para que mejore sus mecanismos y agilice los pagos.

En cuanto al programa de Riesgo compartido, que es nuevo, todavía no hemos tenido la respuesta tan dinámica que queríamos, pero va a mantener porque creemos que va a funcionar muy bien y que los empresarios van a reaccionar. Me alegra que reconozca que estos programas funcionan. Recientemente recibimos la evaluación del programa de Apoyo a doctorados nacionales en donde se muestra el gran impacto que ha tenido para las políticas públicas y la buena respuesta de los estudiantes en los doctorados. La idea es continuar, después, con recursos propios de Colciencias, fortaleciendo este programa, porque Colciencias es, por excelencia, la entidad que financia prácticamente todos los doctorados nacionales —los doctorados en el exterior son menos por el costo que implican, pero anualmente estamos financiando alrededor de 50 personas para hacer doctorados en el exterior—.

P. Mario Gutiérrez. Soy graduado de la Universidad del Valle. La pregunta va dirigida a las directivas de las universidades. Actualmente el peso de la docencia está puesto en profesores hora cátedra y los beneficiarios en las universidades públicas están destinados a los profesores nombrados. La gran mayoría del personal docente está por fuera de los programas de apoyo a doctorados o de la investigación en sí. El aumento de los profesores de medio tiempo parece más oportunista en cuanto a las visitas de condiciones mínimas de calidad y de registro calificado y acreditación. ¿Cuál es la postura que tienen las universidades para el mejoramiento de todos los docentes?

Interviene Carolina Isaza

De parte de la Universidad del Valle, es cierto que ha aumentado el número de profesores hora cátedra por las dificultades que ha habido con la planta de cargos de
profesores y la situación de la Universidad. Para celebrar los sesenta años de la Universidad del Valle se abrió una convocatoria para vincular sesenta profesores nombrados, convocatoria que iba dirigida a vincular profesores que tuvieran doctorado o como mínimo maestría. La siguiente convocatoria que estamos organizando va a estar dirigida a personas jóvenes, que posteriormente se entrenen en sus doctorados. La Universidad reconoce que hay debilidades y está haciendo un esfuerzo muy grande por tratar de aumentar su planta de profesores nombrados, que estén muy bien capacitados para poder brindar el apoyo a los programas de doctorado y posgrado que hay dentro de la Universidad del Valle.

Interviene Ángela Camacho

Aunque no pertenezco a las directivas de la Universidad, quiero comentar que este es un problema que afecta a todas la universidades porque el apoyo en doctorado va directamente a profesores investigadores, que son los profesores de planta. Los profesores de cátedra están ligados a la Universidad de manera muy transitoria. Lo que yo he notado en la Universidad de los Andes es que hay una fuerte tendencia a que la totalidad de los profesores sean de planta y que la figura de profesor de cátedra desaparezca de la Universidad. Sólo serán profesores de cátedra aquellas personas que tienen puestos importantísimos en el gobierno o en la empresa privada y que no pueden dedicarse demasiado tiempo a dictar clases, pero que son muy útiles para la Universidad por su experiencia práctica.

Interviene Carolina Isaza

Quisiera agregar algo. La Universidad del Valle hace un gran esfuerzo para lograr que sus profesores de planta hagan doctorados en el país y en el exterior; en este momento hay más de cuarenta profesores que están haciendo su doctorado.

Interviene Mary Falk de Losada

Yo sólo quisiera añadir que ninguno de nuestros planes o programas tiene posibilidad de éxito si no está basado en el profesor o el maestro, desde la primaria, bien preparado y bien remunerado. Las condiciones tienen que ser tales que el profesor esté
remunerado no sólo en el sentido monetario sino en el sentido de las posibilidades para su desarrollo profesional y personal para cumplir su proyecto de vida. Sin eso, realmen-
te, no hay la excelencia desde la primaria, la secundaria y la universidad.

P. Profesor Giraldo. Voy a hacer la pregunta al final, pero antes quiero dejar al-
gunas inquietudes. La profesora Ángela Camacho mencionaba a la Asociación Colombiana pro-Avance de la Ciencia, cuyo lema es mejorar la calidad en la enseñanza de la Ciencia en todos los niveles y en todo el territorio nacional. Hace ahora once años cuando la Misión de Ciencia, Educación y Desarrollo, de la que formó parte Gabriel García Márquez, entre otros, le propusieron al país una carta de navegación que, si se hubiera seguido, seguramente no estaríamos ahora preguntándonos para dónde vamos. En algunas cosas se siguió, y Colciencias es un ejemplo fiel de que se ha mantenido la mira puesta en eso que se necesita para el desarrollo.

La Misión también decía que la educación es el órgano maestro para el cambio. Y en eso tal vez no se ha avanzado mucho. La pregunta es ¿cuál es el mecanismo para mejorar la calidad y, de paso, hacer que la sociedad en su conjunto tome como meta ese desarrollo a escala humana que requiere el país? Es necesario descubrir los talentos a tiempo, a los diez o doce años, y desarrollarlos para no desperdiciarlos.

Interviene Manuel Elkin Patarroyo

En ese momento la Misión propuso, entre otras cosas, comenzar por educar a los profesores, pero no exclusivamente a los de primaria y secundaria sino hasta el universitario. No he encontrado nada más conservador que la ciencia, es mentalmente goda. Hubo una dificultad enorme, sobre todo con los profesores, y no obtuvimos ninguna respuesta. Eso, a nivel de la educación primaria, que es donde hay que sembrar los principios del cambio, donde no tuvimos ninguna respuesta. Pero entre los profesores universitarios, tampoco.

Hace aproximadamente quince día apareció la lista de los doctores que ingresaban en la Universidad Nacional dentro del Concurso 2017. Tuve la fortuna de que siete de los de mi Instituto pasaran. En la Facultad de Ciencias les clavaron 32 horas de clase: ¡doctores dictando 32 horas de clase, con tiza y tablero! Lo que están pensando estos doctores es renunciar a la Nacional. Para qué seguir discutiendo con la Universidad si ella no quiere cambiar. O sea, lo que nos pasó hace once años con los profesoress de primaria y secundaria está pasando a nivel de los profesores universitarios. Incluso, le dije al rector que para qué se habría un concurso de este tipo cuando de lo que se trata-
ba, en esencia, era de aumentar los grupos de investigación científica para el desarrollo.
La carga docente puede estar en diez o doce horas, pero que puedan hacer investigación en la Universidad.

En 1964 Hans Adolf Grebs escribió un artículo, que aquí tradujeron como Cómo ganarse el Premio Nobel, cuando el título original era algo así como Cómo ser excelente en la ciencia. Decía que para que puedan desarrollarse las ciencias y la investigación en un país, una de las condiciones es que deben crearse institutos de investigación adscritos, pero no dependientes, a las universidades. Creo que lo que ha venido haciendo la doctora María del Rosario Guerra en Colciencias de fortalecer los grupos de investigadores es la salida a la crisis: tener grupos financiados por la institución rectora de la investigación científica, asociados con las universidades, pero no dependientes de ellas.

Por otra parte, estoy de acuerdo con todas mis compañeras panelistas en que hay que enfocarse en la niñez y desde las etapas más tempranas para mostrarles las ciencias más básicas. Si a mí me preguntaran cómo querría yo influir en el cambio del país yo propondría educación fundamental en Matemática y Física, y luego se puede derivar hacia otras áreas. Tiene que haber un encuentro entre la ciencia y las otras áreas de la vida social.

Hace poco estuve en un foro para economistas convocado por Juan Manuel Santos. Cuando nos encontramos, le dije: «te sobaste, porque yo estoy aprendiendo economía y tú no sabes ciencia». Debe haber un diálogo entre las distintas disciplinas para lograr el desarrollo; no existe una interlocución entre lo que los científicos hacemos y lo que hacen los otros profesionales. Nosotros debemos dar el paso, ya que ellos no se están acercando. Dentro de las conferencias hubo una de un muy brillante economista de la Universidad de Harvard, Ricardo Haussman, quien decía que los países debían adquirir una especie de nicho de identidad científica, que es algo en lo que nosotros hemos venido trabajando desde mucho tiempo atrás, porque tenemos que ver en qué áreas nos vamos a desarrollar.

La siguiente conferencia la dictó Mauricio Cárdenas, actual director de Fedesarrollo, quien mostraba, en la penúltima diapositiva, que dentro de los principales 25 productos de exportación de Colombia que tienen perspectiva hacia el futuro están los productos farmacéuticos, los derivados del petróleo, el jabón. Todos son productos químicos. Cuanto más básicos seamos podremos jalonar el desarrollo de nuestro país y aportar a la humanidad, que, en esencia, es lo que nos interesa a todos.
Interviene Bernardo Gómez

Para concluir este panel quisiera leerles un pensamiento de Albert Einstein para que reflexionemos. Einstein nos decía: «pensad que las cosas maravillosas que podéis aprender en los salones de clase son el resultado de esfuerzos de todos los pueblos, de personas que han dedicado su existencia a explorar la naturaleza en tiempos pasados. Tratemos este conocimiento como un tesoro; lo ponemos en vuestras manos para que lo respetéis, lo recibáis con respeto, lo desarrolleis y fielmente lo transmitáis a futuras generaciones. Así es como nosotros, lo mortales, nos hacemos inmortales, pasando el conocimiento de una generación a la siguiente».

Muchas gracias a los panelistas por sus importantes aportes y a ustedes por habernos acompañado.
Clausura

Intervención de María del Rosario Guerra de Mesa,
Directora General del Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología Francisco José de Caldas, Colciencias.

Muy buenas tardes. Señor Presidente de la República, doctor Álvaro Uribe Vélez, doctor Giaver, doctor Felipe García, doctor Rafael Gutiérrez, doctor Eduardo Posada, doctora Ana María Rey, doctor Kümmel, profesor Patarroyo, señores rectores, presidentes de academias, estudiantes, profesores, señoritas y señores. Ante todo quiero agradecer muy especialmente al señor Presidente de la República el que hubiera aceptado nuestra invitación para acompañarnos en este acto de clausura del Simposio, cuando celebramos el Año Mundial de la Física, que coincide con la celebración de los cien años del año maravillosos de Einstein.

Este Simposio que hoy termina, aunque buscaba poner de relieve la importancia de la Física y sus desarrollos para la industria, las finanzas, la medicina, la economía y la sociedad en general, también buscaba ponernos a pensar en lo fundamental que es crear confianza en las capacidades nacionales para generar, transferir y usar conocimiento y apostarle a las ciencias básicas como ese conocimiento fundamental, teórico y filosófico, que permite los desarrollos futuros de aplicaciones y de los avances tecnológicos.

La ciencia y la técnica no son lo mismo, como tampoco lo son formar para la ciencia o formar para la técnica, pero tienen una relación estrecha. El país requiere las dos, pero, sin duda, requiere, de manera urgente, contar con más investigadores que comprendan los problemas y busquen plantear soluciones. Requiere potenciar la creatividad
y la inventiva de los colombianos. Esas fueron las dos características que planteaba en su conferencia el Premio Nobel Ívar Giaever que debe tener hoy un científico.

No defendemos la ciencia por la ciencia; estamos promoviendo que Colombia tenga mayores capacidades en talento humano y en infraestructura, por mencionar sólo dos, para producir, transferir, adaptar y usar el conocimiento. Colombia ha demostrado que tiene en su gente el potencial creativo, imaginativo y comprometido para hacer investigación y desarrollo y para generar nuevos conocimientos, pero requiere recursos para que sea mayor el número de personas vinculadas a estas actividades y para poder financiar los proyectos de investigación y de innovación.

En este Gobierno, de los siete lineamientos de Política de Ciencia, Tecnología e Innovación le hemos dado una importancia especial a dos: poner en la agenda pública y política del país el desarrollo de la ciencia y la tecnología para que ésta, precisamente, haga parte de esas estrategias de mediano y largo plazos, y volver parte de la cultura de los colombianos los valores, los métodos y los comportamientos que caracterizan la ciencia y la tecnología.

Señor Presidente: su apoyo con su presencia hoy aquí es fundamental, es un compromiso más de que el desarrollo de la ciencia y la tecnología para Colombia es posible, y así fue consignado en la Visión 2019 que usted presentó a los colombianos el pasado 7 de agosto. Allí, la ciencia y la tecnología se convierten en uno de los pilares fundamentales para la competitividad del país y para el crecimiento económico. Sabemos de todo su interés porque haya más recursos públicos y, además, más recursos privados que se canalicen hacia estas actividades. Esperamos que, efectivamente, antes de terminar este Gobierno podamos lograr las metas que en este sentido nos propusimos.

Colciencias es una entidad reconocida y respetada nacional e internacionalmente por su eficiencia y objetividad en sus procesos y decisiones. Es, por excelencia, el financiador de las actividades de ciencia, tecnología e innovación en el país. Sin embargo, no es posible pensar que podemos transformar la estructura productiva de Colombia y entender mejor nuestras realidades sociales, económicas y culturales sólo con nuestros muy escasos recursos. Por ello, requerimos que no sólo los ministerios sectoriales asuman con sus propios recursos el financiamiento de la investigación y el desarrollo de su sector, sino que sigamos motivando a nuestros empresarios para que ellos sigan invirtiendo en su propia innovación. Uniendo todos nuestros esfuerzos, apuntando a unos mismos objetivos y con unas mismas reglas de juego que han caracterizado la ciencia, seremos más efectivos y construiremos más fácilmente a Colombia. Estamos cambiando la imagen del país por una imagen de una Colombia comprometida con la equidad, con la inclusión, la solidaridad y con la búsqueda de la paz.

Mil gracias a todos ustedes.
Intervención de Eduardo Posada Flórez
Director del Centro Internacional de Física.
Síntesis de las discusiones del Simposio.

Señor Presidente, profesor Ívar Giaever, doctora María del Rosario Guerra, doctor Felipe García, doctor Rafael Gutiérrez, rectores y otros dignatarios que nos acompañan hoy, señores y señoritas:

Yo llevo muchos años participando en eventos relacionados con la Física en sus diferentes modalidades y es la primera vez que un presidente de la República nos acompaña en un evento de estas características y, por eso, quiero agradecer, muy sinceramente, al Presidente Uribe el que hoy esté con nosotros para oir estas reflexiones, que son una especie de síntesis del trabajo que se hizo durante el Simposio.

El Simposio cubrió muchos aspectos, pero, para mí, la primera conclusión es que la Física ha desempeñado un papel fundamental en el desarrollo económico del mundo, especialmente a lo largo del siglo XX. La física ha sido la ciencia más fundamental; y la química moderna, al igual que la biotecnología, le deben todo a la física. En ese sentido, la Física ha sido el motor del desarrollo económico mundial. No cabe la menor duda de que sin la mecánica cuántica no existirían los teléfonos celulares ni los computadores. Y la Física va a seguir desempeñando ese papel hacia delante. La Física, y la ciencia en general, van a ser no sólo los motores del desarrollo económico sino las piezas clave del desarrollo económico y social de la humanidad en el siglo XXI.

Un país como el nuestro tiene que entender que la ciencia es fundamental para su futuro. Un país que no tenga un sector científico fuerte simple y llanamente no tiene posibilidades de competir en el siglo XXI. La UNESCO recomienda que un país, para ser viable, debe invertir, por lo menos, el 1% de su PIB en investigación. Colombia, según los datos actuales, no sobrepasa el 0,3 o el 0,4%. En ese sentido, está muy atrás incluso en comparación con otros países latinoamericanos, empezando por Brasil, que hace tiempos pasó el 1%.

Uno de los llamados que yo quiero hacerle al señor Presidente es que comprendamos que hoy, cuando estamos en un proceso de apertura económica, es indispensable, para garantizar la supervivencia de nuestro sector industrial y del sector productivo, en general, hacer un enorme esfuerzo para modernizarlo y un enorme esfuerzo para que la innovación se vuelva el motor de esa modernización. Y la innovación, sin una base de conocimiento, de investigación y de desarrollo, tampoco puede llegar muy lejos. Es decir que, para poder afrontar con éxito el tratado de libre comercio, y estoy seguro de que lo podemos hacer, es indispensable y urgente llevar a cabo esa modernización del
sector productivo, proceso que pasa por actualizar las empresas que hay y crear nuevas empresas en todos los sectores.

Quiero destacar, primero, la importancia de la Física; en segundo lugar, la importancia de la ciencia como tal y, tercero, la necesidad urgente de que nuestro país tome, como una de sus prioridades fundamentales, el desarrollo de su capacidad de producir conocimiento. Colombia tiene, en estos momentos, un potencial humano admirable, tenemos la capacidad de hacer ese desarrollo, pero necesitamos impulsarlo mediante recursos económicos efectivos. En la actualidad, Colciencias apenas puede financiar un 20% de los proyectos que recibe y eso es, desafortunadamente, muy poco y puede frenar el desarrollo que ha tenido lugar en todo el sector de ciencia y tecnología en los últimos años. Si logramos que Colciencias tenga más recursos, el país responderá y también lo hará la comunidad científica nacional. Tenemos la capacidad de hacer las cosas, necesitamos ese empujón y esa confianza por parte del Estado de que si podemos hacer las cosas para que el país pueda despegar con éxito en el siglo XXI.

Muchas gracias

Intervención de doctor Ivar Giaever,
Premio Nobel de Física, 1973

Señor presidente, distinguidos colegas, damas y caballeros:

Me complace mucho haber sido invitado a visitar Colombia; nos han hecho sentir, a mi esposa y a mí como invitados muy especiales. La importancia del Premio Nobel realmente no radica en la persona, la importancia del Premio Nobel consiste en poder llamar la atención sobre la importancia de la ciencia al menos una vez al año. Cada diciembre se otorgan los Premios Nobel de Ciencia en Suecia y, en ese momento, los ojos del mundo se enfocan en la importancia de la ciencia.

Como ustedes saben, estamos celebrando los cien años de los famosos artículos que publicó Einstein, así que, en muchos sentidos, estamos celebrando a Einstein. Pero, como les planteé en mi conferencia, ningún científico es absolutamente indispensable en sí mismo; si Einstein no hubiera vivido, habríamos llegado a tener los mismos conocimientos que él mostró. Entonces, este año estamos realmente celebrando el éxito de la Física y de la ciencia. Como se ha dicho mucho, estamos en la era de la globalización y en ella el activo más importante es tener personas bien educadas. Admito que también ayuda mucho tener petróleo, por ejemplo. Pero eso, realmente, no es lo importante; lo importante es educar a la gente.
Les voy a dar el ejemplo de la Universidad de Stanford y el Valle Silicon, que está en cercanías de esta Universidad: ahí puede verse la profunda interacción de la educación y la industria. Esa interacción ha generado dos gigantes mundiales: Microsoft y Google. Con suerte, algo así también podría ocurrir en Colombia. Yo sé que tienen gente maravillosa. Esta tarde mi esposa y yo visitamos el Museo del Oro y, al igual que todo el mundo, quedé muy impresionado por toda esa cantidad de oro, pero lo que más me gustó fueron la cerámica y todas las figuras, que muestran la creatividad de estos pueblos. Y esta mañana tuve la fortuna de reunirme con aproximadamente cien jóvenes estudiantes colombianos y me impresionaron mucho su interés y su creatividad y todas las preguntas que hicieron. Lo único que no me preguntaron fue ¡cuánto gano!

Así que, señor Presidente, me complace muchísimo saber que se ha tomado su tiempo para poder estar aquí con nosotros; sabemos que su agenda está muy apretada, pero su presencia aquí significa mucho para nosotros.

Muchas gracias.

Intervención de Álvaro Uribe Vélez,
Presidente de la República de Colombia

Doctora María del Rosario Guerra de Mesa, doctor Felipe García, doctor Rafael M. Gutiérrez, profesor Ívar Giaever, señora Inger Giaever, profesor Reiner Kümml, doctor Eduardo Posada Flórez, doctora Ana María Rey, profesor Manual Elkin Patarroyo, doctor Alfonso Orduz, distinguidos directivos y funcionarios de Colciencias, muy apreciados estudiantes, académicos, asistentes, directivos de Compensar, que nos acogen en sus instalaciones, doctora Alicia Arango, señoras y señores.

Quiero felicitarlos muy sinceramente por este simposio. Qué bueno que un país como el nuestro esté participando activamente en la celebración del año maravilloso de Einstein y que sea sede de un simposio tan importante, un país tan flagelado por el terrorismo, por la pobreza, por tantas dificultades, y que empiece a tener una concurrencia tan importante sobre este tema. Mi gratitud inmensa a quienes han venido desde afuera, quienes nos honran con su presencia.

Para buscar confianza en Colombia, hemos querido trabajar estos ejes:
- La seguridad con espíritu democrático, que proteja por igual a todos los co-
lombianos, independientemente de que sean afectos a las tesis del gobierno o participen de la crítica o la oposición.

- La transparencia. Nuestro país tiene que eliminar la corrupción y ese es un mandato esencial sin el cual no construiremos confianza en Colombia.

- La reactivación de la economía y la reactivación social. La reactivación social la hemos dividido en lo que hemos llamado las siete herramientas de equidad: la revolución educativa, la protección social, el impulso a la economía solidaria, el manejo social del campo, la construcción de un país de propietarios, avances de la infraestructura para la calidad de vida urbana.

Como ustedes ven, ese conjunto de herramientas está encabezado por la revolución educativa, que, a su vez, se ha dividido en las áreas de cobertura, calidad, capacitación técnica, pertinencia y apoyo a la investigación científica y a la transferencia de tecnología. Por qué la revolución educativa, porque finalmente es el único camino que conduce a la productividad, a la competitividad, al incremento del ingreso, y a un mayor grado de equidad en su distribución. Es el camino que abre las posibilidades de la movilidad social, que es un requisito fundamental en las sociedades democráticas.

Yo diría que hemos avanzado bastante en cobertura en educación básica, universitaria, en capacitación técnica, y que se ha creado mucha conciencia en pertinencia, especialmente en el área de la capacitación técnica. En cobertura en primaria y secundaria, a la fecha llevamos un millón cien mil cupos, del millón y medio que nos comprometimos alcanzar en el cuatrienio. Estamos haciendo esfuerzos para cumplir esta meta, que es muy exigente, pero insuficiente. Si la cumplimos, de todas maneras quedarán 500,000 niños colombianos por fuera del aparato escolar.

En cobertura universitaria nos propusimos crear, con un esfuerzo combinado de universidades públicas y privadas e Icetex, 400,000 cupos. Este año estamos acercándonos a los 260,000, sumando las carreras tecnológicas, algunas de las cuales son ofrecidas por el SENA. Allí hay un tema muy importante, pues estamos integlando el SENA con las universidades para que quienes estudien una tecnológica en el SENA, completando los créditos requeridos, puedan acceder al título de educación superior en la universidad que tenga el acuerdo con las instituciones técnicas y tecnológicas.

Nos ha preocupado, tanto en la educación básica como en la universitaria, la deserción porque no basta con crear los cupos si no se garantiza la permanencia de todos los estudiantes durante todo el periodo. Y en esa tarea estamos empeñados en mostrar mejores resultados. Hemos crecido bastante en la cobertura en capacitación técnica. El SENA sólo estaba capacitando 1.100.000 colombianos al año; esperamos que el año entrante sean 4 millones y estamos haciendo presencia en todo el territorio nacional.
En pertinencia se ha mejorado, como quiera que hemos aumentado la empleabilidad de los egresados de las técnicas y tecnológicas. Los esfuerzos que se hacen en calidad son importantes. Primero con la decisión de que los maestros de primaria y secundaria del sector público no lleguen a los cargos por señalamiento político sino por concurso. Otro paso bien importante para la calidad son las pruebas SABER, así como el conjunto de certificaciones exigidas a las universidades –entre ellas la acreditación de todos los programas y luego la acreditación de excelencia–. También las pruebas de los egresados universitarios, que confío en que, entre este año y el entrante, cubran todos los programas universitarios.

En el área de la investigación, de la ciencia y tecnología tenemos un atraso grande. Lo ha dicho el doctor Posada, y lo acepto. Los esfuerzos que han hecho la directora de Colciencias y su magnífico equipo son mayores que los presupuestos de los que disponen. Ellos han hecho rendir inmensamente el dinero. Nosotros hemos tenido toda la voluntad; hemos debido afrontar una situación deficitaria muy grave en el país. Por ejemplo, sólo para poder cumplir la meta de cobertura escolar básica, además de las transferencias de educación que crecen año tras año, este año estamos aplicando a contratación 150.000 millones adicionales. Yo estoy un poco más optimista porque creo que cuando conozcamos las cifras consolidadas de los sectores público y privado el país estará regresando a un 0,6% del PIB. Es muy poco, si miramos sólo Colciencias, ahí estamos en 0,22%, pero si consolidamos todo el sector público y el sector privado, creo que llegamos al 0,6%. Sé que tenemos que llegar muy pronto a la meta del 1% del PIB y creo que estamos en ese camino.

Hemos crecido bastante en el programa de créditos condonables para estudios de doctorado en el país; a la fecha, durante este Gobierno se han beneficiado 424 personas. Nuestras universidades públicas han avanzado inmensamente en el porcentaje de profesores con doctorado, eso se miraba con desprecio en la universidad pública colombiana; desde la universidad privada no se veía la posibilidad de que la universidad pública diera ese salto, pero lo hizo. Esos avances son muy importantes y están siendo apoyados por el Icetex.

En el programa de créditos condonables para doctorados en el exterior hemos apoyado, con este presupuesto y a través de Colciencias, a 170 personas. El programa de jóvenes investigadores ha llegado, en el periodo 2002-2005, a 743 jóvenes investigadores, es decir, un crecimiento del 12%; y el programa de apoyo a los centros de excelencia también es muy importante.

Hay que mirar también lo que se está haciendo en otras áreas del Estado, que no se nutren del presupuesto de Colciencias y que apoyan centros de investigación. El apoyo a la investigación en infraestructura y movilidad también es importante. Nosotros
hemos propuesto para Colombia lo que llamamos la Visión Colombia II Centenario; es una visión del país al 7 de agosto del 2019, muy exigente. Está ajustada a las Metas del Milenio.

El pasado 7 de agosto publicamos el primer borrador de esa visión y está empezando la discusión en todo el país. Confiamos en que, en el primer trimestre del año entrante, podamos publicar el segundo borrador, que sería el que tendría en cuenta la discusión que se está dando alrededor del primero. En este momento estamos construyendo la Agenda de Competitividad que va a ser otro documento de visión de largo plazo y que necesita Colombia con urgencia. En esa labor están participando la academia y los gremios. Los programas en infraestructura y movilidad son de gran importancia para apoyar el logro de esa agenda de competitividad que hace parte de la Visión Colombia II Centenario.

Los felicito de todo corazón y les agradezco muchísimo su atención. Quería contárselos en qué vamos bien y reconocer los atrasos graves que aún tenemos en apoyo presupuestal a Colciencias y a sus programas. Vamos a seguir haciendo esfuerzos para ver cómo se sanea este presupuesto de la Nación para que el país disponga de mayores recursos para esta actividad.

* Preguntas

P. ¿Qué grandes proyectos en ciencia y tecnología está pensando el gobierno, ya que se ve que en un sector como el de las telecomunicaciones hay tanto por hacer? Y, ¿por qué, en lugar de pensar en el 1%, no pensamos más bien en el 30% que se usa para prepagar deuda?

R. El país no se puede aislarse. Si algo necesita el país es recuperar la confianza de los inversionistas, que se viene recuperando. La inversión extranjera en Colombia se había caído a 500 millones de dólares al año. El año pasado la inversión subió a 3.500 millones de dólares y este año vamos a tener 5.000 millones. Si nosotros salimos a negar la deuda, crearemos un mal mayor. Hasta 1990, el país tuvo porcentajes de endeudamiento manejables; eso se disparó en los últimos años, porque los teníamos alrededor del 16% del PIB y se subieron al 54%. Lo que hemos hecho es que, a medida que se van saneando las finanzas, se ha conseguido reducir sustancialmente las tasas de interés.

Los TES nos costaban al 17% anual cuando empezó el Gobierno; hoy están entre el 9 y el 11%. La brecha entre los intereses que se cobran a los bonos de Estados Unidos y a los bonos colombianos era de 600 puntos, hoy es de 300. Un país que perdió el
grado de inversión que perdió Colombia —y que todavía no ha recuperado— ha logrado colocar en los últimos tiempos 875 millones de dólares en bonos en el extranjero denominados en pesos. Que los inversionistas extranjeros compren papeles del tesoro colombiano emitidos por el Estado colombiano era una utopía; lo hemos logrado. Hemos transformado 3.000 millones de dólares en deuda en pesos. No es que nos hallamos gastado las reservas para eso, lo que pasa es que hemos comprado unas reservas al Banco de la República y las hemos girado para eso. Y el Banco de la República ha hecho una acumulación de reservas sin antecedentes; ya superó los 15.000 millones de dólares, cuando el récord colombiano era de 10.000 millones.

Hay dos caminos: uno, negar esa deuda, aislar al país, crearle dificultades; el otro es renegociarla, abaratarla, sin alharaca, sin discursos demagógicos, pero con resultados, construyendo confianza y presionando para ampliar los plazos, conseguir mejores condiciones en los créditos, bajando la tasa de interés, etc. Uno de los problemas que está teniendo un país vecino es que está recuperando la economía, pero sin aumentar la capacidad instalada. Cuando se cope esa capacidad instalada, o cuando empiecen a trabajar al 90% de la misma, puede producirse un sobrecalentamiento generando tendencias inflacionarias, agotamiento en la estación productiva. De ahí la importancia de construir confianza para poder instalar capacidad.

En cuanto al área de las telecomunicaciones, en lugar de deshacernos de los activos nacionales, como en el caso de Colombia Telecomunicaciones, lo que estamos buscando es tener aliados estratégicos que tengan capital, tecnología, conocimiento, experiencia administrativa y mercados, para que esos aliados nos ayuden a salvar nuestras empresas; de lo contrario, llegará un momento en el que desaparecen. En materia de telecomunicaciones hay que estar en la vanguardia para no desaparecer, y para eso estamos gestando esas alianzas estratégicas para ofrecer un servicio más eficiente y más barato.

Réplica. Pero el señor Slim lo que dijo es que las tarifas de las telecomunicaciones en Colombia eran muy baratas y que había que nivelarlas. O sea que van a subir, no a bajar.

R. Al contrario, lo que ha venido pasando en los últimos años es que han bajado sustancialmente, por fortuna. Lo que necesitamos es tener mejor tecnología y tarifas más bajas. Colombia necesita unos desarrollos de banda ancha inmensos y costososísimos.

Réplica. Pero se podrían buscar otros mecanismos para invertir en tecnología.

R. La gente le tiene mucho miedo a la emisión, joven, porque ¿qué tal la inflación?

Réplica. Pero es que aplican teorías que no han funcionado.
R. Si me demuestra cómo se puede hacer esa ampliación de moneda sin riesgos inflacionarios, yo me voy con usted al Banco de la República.

Réplica. Cuando la emisión va dirigida hacia la industria, es decir, a generar bienes tangibles y reales, no genera inflación, y así lo mostró Franklin D. Roosevelt. Cuando genera inflación es cuando hay mucho papel y no hay bienes físicos que los respalden. Si nuestro interés fuera reducir la inflación y la especulación se pondría un tope a los derivados financieros, es decir, todo el papel que hay.

R. La expansión en Colombia viene siendo superior al 20%. Teníamos al final de la década de los noventa crecimientos negativos; hemos vuelto a recuperar una senda importante de crecimiento. Yo estoy de acuerdo con usted en una expansión canalizada a la producción, pero eso no se ha negado. Cuando este Gobierno asumió, la inversión privada como porcentaje del PIB estaba en el 8; el año pasado terminó en el 12% y yo confío que este año termine en el 15% y tenemos que llegar rápidamente al 20%. Ha habido más confianza y también una ayuda en expansión. Lo invito a que exponga su teoría en un memorando y yo hago que en el Ministerio de Hacienda y en el Banco de la República la estudien.

Réplica. Acepto la invitación.

P. Más que una pregunta, yo quiero hacer una sugerencia con motivo de este interesante debate que se acaba de dar. En la conferencia del profesor Reiner Kümml el tema central podría decirse que fue algo así como termo-economía, algo que va en dirección de la econofísica. Allí se pone de relieve que la física ciertamente si son motor de desarrollo, sobre todo en el sentido de generar nuevas ideas y resolver mucho más que los problemas abstractos de las ciencias. La sugerencia es que, así como hay unas recomendaciones de la Misión de Ciencia, Educación y Desarrollo, sería muy conveniente que el Gobierno incentivara esa retroalimentación desde las ciencias, por ejemplo, a través de una comisión, para que haya una mayor profundización hacia la solución de los problemas.

R. Le traslado la inquietud a la Directora de Colciencias.

P. Mi intención es sembrarle una inquietud, señor presidente, para que desde su despacho pueda impulsar la iniciativa que podría abrir mucho más la industria de nuestro país. Me refiero a la industria aeroespacial. El Ministerio de Relaciones Exteriores está trabajando desde hace unos años con varias universidades, institutos, entre otros, la creación de una instancia aeroespacial. Yo trabajo en la Universidad Sergio Arboleda y allí estamos desarrollando un pico satélite, que está programado para lanzarse el año entrante, creemos que la ayuda sería que, al crear esta instancia, se apoye a todas las
universidades y centros de investigación en este caso y allí la industria tendría nuevos campos de trabajo.

R. Esperaré que el Ministerio de Relaciones Exteriores me presente los avances en ese tema.

P. ¿No cree que el gobierno debería asesorarse con los grandes científicos o intelectuales de Colombia sobre cuál es la mejor forma de afrontar la guerra? Yo vengo de una familia humilde de un pueblo muy violento, Chita, y tengo familiares que están en el ejército, en la guerrilla y en el paramilitarismo y sería muy triste que, por no darle un tratamiento adecuado al conflicto, un día mis familiares terminen matándose entre sí. Uno no necesita ser un Premio Nobel para entender que la guerra es algo totalmente irracional.

R. Justamente, estuve en Chita, Boyacá, donde llevamos dos años y medio en una situación muy diferente a la que se vivía. El norte de Boyacá ha avanzado mucho en paz; yo lo encontré sin presencia de Estado, controlado por el terrorismo guerrillero y con unas incursiones de paramilitares de Casanare. Esa situación ha mejorado. Instalamos el Batallón de Alta Montaña, la gente está produciendo más; reconstruimos el puente de Pintón. Ahora tenemos unas vías adjudicadas para pavimentar. Reparamos toda la infraestructura que estaba destruida. Hemos avanzado en educación, en población afiliada al régimen subsidiado de salud, en familias en acción, en los programas de Bienestar Familiar de niños y de ancianos. Yo tengo fe en ese camino.

La verdad es que una autoridad ejercida transparentemente, con vocación democrática, tarde o temprano obliga a estos grupos a negociar. Los paramilitares que están negociando no lo hacen porque estuvieran muy a gusto con la negociación, sino porque la presión militar los dejó sin opción, y yo confío en que lo propio ocurra con el ELN y con las FARC. A la negociación se llega a partir del ejercicio firme, democrático y transparente de la autoridad. Este país todavía tiene una tasa de homicidios muy alta, pero ha mejorado. En el primer año de este Gobierno el homicidio declinó un 20%; en el segundo año, bajó un 20%, en el 2004, un 15% y este año ha bajado un 18%. Colombia llegó a tener 3,050 secuestros en el año; este año van 400, de los cuales 250 son extorsivos. Bogotá no ha tenido un solo secuestro extorsivo este año. En otras circunstancias, estos ilustres visitantes no habrían venido al país. No estamos en la gloria, pues los problemas que tenemos son muy graves, pero la tendencia es buena. Por otra parte, toda sugerencia científica hay que recibirlo con el mayor respeto.

P. Yo quiero agradecer a su gobierno y a la doctora María del Rosario Guerra por el apoyo que han dado a mi grupo de investigadores, que no tenemos maestrías ni PhD, pero que Colciencias ha apoyado. Nuestro grupo va a tener muy pronto un diagnóstico matemático para la monitoría fetal hecho en Colombia.
R. Muchas gracias, muy generoso usted porque lo que falta es mucho. Si estuviéramos muy bien, no habría venido. Vino a dar la cara por las dificultades que tenemos.

P. La verdad es que el compañero me quitó las palabras. También quería, a nombre de nuestro grupo, agradecer. Hay un dicho que a mí me gusta mucho: «es de bien nacido ser agradecido». En su Gobierno hemos recibido mucho apoyo y hemos podido avanzar en el desarrollo de las vacunas químicamente hechas. También me gustaría aportar algo al tema de la ciencia y la tecnología. En la Misión de Ciencia, Educación y Desarrollo, en la que participé junto con Eduardo Posada, le decíamos al país que para esta época lo que estábamos necesitando eran 25.000 investigadores científicos graduados.

Tenemos la mitad de esa cifra inscritos; sólo hay 1.700 graduados con título de doctorado y 3.300 con título de magister. O sea, estamos en un escaso 13% de lo que se requeriría para esta época. Mi sugerencia, muy respetuosa, para todos y mi solicitud a usted, sería que hiciéramos énfasis en los estudios de doctorado no sólo para el desarrollo de la ciencia sino para la interacción con la industria y con la empresa. Uno de los problemas que tenemos es que no hay interlocutores legítimos entre los dos mundos, el de la academia y el empresarial.

R. Gracias, doctor Patarroyo. Recojo lo que usted dice de la siguiente manera. Estamos tramitando en el Congreso la reforma al Icetex para convertirlo en una entidad independiente, que tenga toda la libertad y toda la movilidad financiera, que no tenga que depender de las limitaciones del presupuesto nacional, que no funcione a través de sedes burocráticas en diferentes regiones, sino que los créditos se canalicen a través de las universidades y que haga un gran énfasis en la financiación de doctorados. A todos, mil gracias y muchas felicitaciones por el esfuerzo que han hecho.